


Transactions on Computer Systems  
and Networks

Series Editor

Amlan Chakrabarti, Director and Professor, A. K. Choudhury School of Informa-
tion Technology, Kolkata, West Bengal, India



Transactions on Computer Systems and Networks is a unique series that aims to 
capture advances in evolution of computer hardware and software systems and 
progress in computer networks. Computing Systems in present world span from 
miniature IoT nodes and embedded computing systems to large-scale cloud infra-
structures, which necessitates developing systems architecture, storage infrastruc-
ture and process management to work at various scales. Present day networking 
technologies provide pervasive global coverage on a scale and enable multitude of 
transformative technologies. The new landscape of computing comprises of self-
aware autonomous systems, which are built upon a software-hardware collaborative 
framework. These systems are designed to execute critical and non-critical tasks 
involving a variety of processing resources like multi-core CPUs, reconfigurable 
hardware, GPUs and TPUs which are managed through virtualisation, real-time 
process management and fault-tolerance. While AI, Machine Learning and Deep 
Learning tasks are predominantly increasing in the application space the computing 
system research aim towards efficient means of data processing, memory manage-
ment, real-time task scheduling, scalable, secured and energy aware computing. The 
paradigm of computer networks also extends it support to this evolving application 
scenario through various advanced protocols, architectures and services. This series 
aims to present leading works on advances in theory, design, behaviour and applica-
tions in computing systems and networks. The Series accepts research monographs, 
introductory and advanced textbooks, professional books, reference works, and 
select conference proceedings.



Srikrishnan  Sundararajan

Multivariate Analysis 
and Machine Learning 
Techniques
Feature Analysis in Data Science Using 
Python

1 3



Srikrishnan Sundararajan
Computer Science and Engineering
Adi Shankara Institute of Engineering  
and Technology
Kaladi, India

ISSN 2730-7484 ISSN 2730-7492 (electronic)
Transactions on Computer Systems and Networks
ISBN 978-981-99-0352-8 ISBN 978-981-99-0353-5 (eBook)
https://doi.org/10.1007/978-981-99-0353-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature  
Singapore Pte Ltd. 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. 
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore

https://doi.org/10.1007/978-981-99-0353-5


v

Preface

This book offers a comprehensive first-level introduction to data analytics. The 
book covers multivariate analysis, AI/ML, and other computational techniques for 
solving data science problems using Python. The topics covered include a working 
introduction to programming with Python for data analytics, probability and sta-
tistics, hypothesis testing, correlation and regression, factor analysis, classification 
(including logistic regression, linear discriminant analysis, decision tree, and sup-
port vector machines), cluster analysis, survival analysis, general computational 
techniques (market basket analysis, social network analysis, and recommendation 
systems), machine learning, and deep learning.

Many academic textbooks are available for teaching statistical applications 
using R, SAS, and SPSS. However, there is a need for textbooks that provide a 
comprehensive introduction to the emerging and powerful Python ecosystem, 
which is pervasive in data science and machine learning applications.

The book offers a judicious mix of theory and practice, reinforced by over 100 
tutorials coded in the Python programming language. The tutorials and examples 
conceptualize real-world problems using data curated from public domain data-
sets. It is designed to benefit any data science aspirant with a primary (higher sec-
ondary school level) understanding of programming and statistics. This book may 
be a supplementary textbook for first-level courses in applied statistics, multivari-
ate analysis, machine learning, deep learning, data mining, and business analytics. 
It can also be used as a reference book by data analytics professionals.

Chennai, India Srikrishnan Sundararajan



vii

Acknowledgements

The author extends profound gratitude to Mr. Sreejith Srikrishnan (Data Scientist 
at Tiger Analytics, Chennai (IIT Gandhinagar) for his invaluable contributions to 
the sections on ‘social network analysis’ and ‘artificial intelligence and deep neu-
ral networks,’ as well as for his meticulous review of the book. The author also 
wishes to express sincere appreciation to Mr. Sreenath Srikrishnan (Scientist at 
Cellarity, Boston | GaTech, IIT Madras) for providing insightful feedback on the 
chapters related to ‘survival analysis,’ ‘Python for data analytics,’ and ‘artificial 
intelligence and deep neural networks’. The author would like to acknowledge the 
assistance of ChatGPT, an AI language model developed by OpenAI, which was 
instrumental in generating many questions based on the chapter content at the end 
of the chapters. ChatGPT’s capabilities also played a valuable role in enhancing 
the content and engagement with the readers.

Furthermore, the author acknowledges with gratitude the efforts of Ms. T. 
Sobha, Associate Professor, CSE, and Ms. Remya Raveendran, Assistant Professor 
CSE-AI, Adi Shankara Institute of Engineering and Technology, Kaladi, India, for 
their diligent and thoughtful reviews of the chapters ‘cluster analysis’ and ‘artifi-
cial intelligence and deep neural networks,’ respectively.

The author expresses sincere gratitude to Ms. Kamiya Khatter, Associate Editor 
at Springer Nature India, for her pivotal role in making the book a reality and 
enhancing its overall presentation.

November 2023 Srikrishnan Sundararajan



ix

Contents

1 Introduction and Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The World of Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 History and Evolution  . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Data Analytics—Basic Concepts and Terminology . . . . 5
1.1.3 Job Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 How to Use This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 A Brief Description of the Datasets Used . . . . . . . . . . . . . . . . . . 11
1.4 Python, Packages, TensorFlow, and Keras . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Python for Data Analytics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 The Python Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 The World of Python  . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 IDE for Python Programming  . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Defining Python Programming Language . . . . . . . . . . . 33

2.2 Variables and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Advanced Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Control Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Functions and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6 Pandas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.7 Numpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.8 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.8.1 Measurements, Features, and Targets  . . . . . . . . . . . . . . 68
2.8.2 Data Preprocessing Concepts . . . . . . . . . . . . . . . . . . . . . 69
2.8.3 Data Preprocessing Examples . . . . . . . . . . . . . . . . . . . . 70

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 Introduction to Probability and Statistics  . . . . . . . . . . . . . . . . . . . . . 81
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Measures of Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.2 Measures of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2.3 Visual Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

http://dx.doi.org/10.1007/978-981-99-0353-5_1
http://dx.doi.org/10.1007/978-981-99-0353-5_1
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_2
http://dx.doi.org/10.1007/978-981-99-0353-5_2
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_3
http://dx.doi.org/10.1007/978-981-99-0353-5_3
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec5


Contentsx

3.3 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.1 Rules of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.2 Independent Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.3 Statistical Dependence and Bayes Theorem  . . . . . . . . . 91

3.4 Discrete Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.1 Mean and Standard Deviation of a Discrete  

Random Variable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.2 Binomial Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.3 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Continuous Probability Distributions. . . . . . . . . . . . . . . . . . . . . . 98
3.5.1 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5.2 T-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5.3 Chi-Squared Distribution . . . . . . . . . . . . . . . . . . . . . . . . 101

3.6 Sampling Distributions and Central Limit Theorem . . . . . . . . . . 103
3.6.1 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.6.2 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Point and Interval Estimates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Hypothesis Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.1 The Fundamentals of Hypothesis Testing . . . . . . . . . . . . . . . . . . 114

4.1.1 Hypothesis Testing Procedure . . . . . . . . . . . . . . . . . . . . 115
4.1.2 Hypothesis Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.1.3 Type I Error, Type II Error, and the Level  

of Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2 Comparison of Means Overview . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3 Comparison of Means—Independent Samples t-Test . . . . . . . . . 117
4.4 One Sample T-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5 Comparison of Means—Paired Samples . . . . . . . . . . . . . . . . . . . 127
4.6 One-Way Anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.7 Chi-Square Test of Independence  . . . . . . . . . . . . . . . . . . . . . . . . 132
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.1 Mathematical Insights on Linear Regression Model . . . . 148
5.2.2 Multiple Linear Regression Model  . . . . . . . . . . . . . . . . 149
5.2.3 The Coefficient of Determination  . . . . . . . . . . . . . . . . . 152
5.2.4 Manual Calculation of R2 . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.5 Significance of the Overall Linear Regression  

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3 The Regression Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.1 Primary Inspection of the Results of Regression 
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.2 Some Concepts Associated with Regression  
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_4
http://dx.doi.org/10.1007/978-981-99-0353-5_4
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_5
http://dx.doi.org/10.1007/978-981-99-0353-5_5
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec10


Contents xi

5.3.3 Advanced Inspection of the Results of Regression 
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4 Case Study on Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . 159
5.4.1 Case Study—Part I—Number Checks . . . . . . . . . . . . . . 160
5.4.2 Case Study—Part II—Visual Inspections  . . . . . . . . . . . 164

5.5 Case Study—Stepwise Regression  . . . . . . . . . . . . . . . . . . . . . . . 168
5.6 Case Study—Feature Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.7 Polynomial Regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2 Binary Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.3 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.4 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . . . . . . . . . 192
6.5 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.5.1 The Basic Decision Tree Algorithm . . . . . . . . . . . . . . . . 194
6.5.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.5.3 Overfitting and Tree Pruning . . . . . . . . . . . . . . . . . . . . . 197
6.5.4 Various Decision Tree Algorithms . . . . . . . . . . . . . . . . . 198

6.6 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.7 Other Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7 Factor Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.1 Factor Analysis—Introduction and Overview . . . . . . . . . . . . . . . 213

7.1.1 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.1.2 PCA—Theoretical Basis  . . . . . . . . . . . . . . . . . . . . . . . . 214
7.1.3 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.2 Important Concepts Associated with Factor Analysis . . . . . . . . . 218
7.2.1 The Measurement Instrument  . . . . . . . . . . . . . . . . . . . . 218
7.2.2 Data Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.2.3 Common Terms Associated with Factor Analysis . . . . . 219
7.2.4 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.2.5 The Steps Involved in Factor Analysis . . . . . . . . . . . . . . 221
7.2.6 How to Determine the Number of Factors . . . . . . . . . . . 221

7.3 The Project Performance Case Study  . . . . . . . . . . . . . . . . . . . . . 222
7.3.1 Factor Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . . 222
7.3.2 Data Transformation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.3.3 Case Study—Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 224

7.4 Confirmatory Factor Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.1 An Overview of Cluster Analysis  . . . . . . . . . . . . . . . . . . . . . . . . 241

8.1.1 Proximity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_6
http://dx.doi.org/10.1007/978-981-99-0353-5_6
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_7
http://dx.doi.org/10.1007/978-981-99-0353-5_7
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_8
http://dx.doi.org/10.1007/978-981-99-0353-5_8
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec2


Contentsxii

8.1.2 Challenges in Cluster Analysis  . . . . . . . . . . . . . . . . . . . 244
8.1.3 General Procedure for Cluster Analysis . . . . . . . . . . . . . 244

8.2 Hierarchical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.2.1 Agglomerative/Divisive Clustering . . . . . . . . . . . . . . . . 245
8.2.2 Dendrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.2.3 Distance Measures in Hierarchical Clustering . . . . . . . . 246

8.3 Partitioning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.3.1 K-Means Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.3.2 K-Medoids Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.3.3 CLARANS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.3.4 Distance Measures in Partitioning Methods  . . . . . . . . . 251

8.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
8.4.1 Silhouette Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
8.4.2 Calinski-Harabasz Index  . . . . . . . . . . . . . . . . . . . . . . . . 252
8.4.3 Evaluation of the Quality of Clustering . . . . . . . . . . . . . 253
8.4.4 Scree Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

8.5 Other Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.5.1 The Choice of Algorithms . . . . . . . . . . . . . . . . . . . . . . . 260
8.5.2 Density-Based Clustering  . . . . . . . . . . . . . . . . . . . . . . . 261
8.5.3 Grid Based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.5.4 Probability Model-Based Clustering . . . . . . . . . . . . . . . 261
8.5.5 Clustering High Dimensional Data  . . . . . . . . . . . . . . . . 262
8.5.6 Clustering Large Datasets  . . . . . . . . . . . . . . . . . . . . . . . 262
8.5.7 Clustering Graphs and Network Data  . . . . . . . . . . . . . . 263

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.1 Introduction and Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

9.1.1 What is Censored Data? . . . . . . . . . . . . . . . . . . . . . . . . . 273
9.1.2 The Goals of Survival Analysis . . . . . . . . . . . . . . . . . . . 275
9.1.3 A Survival Analysis Case Study. . . . . . . . . . . . . . . . . . . 277

9.2 Kaplan–Meier Survival Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 278
9.3 Log-Rank Test and Cox Proportional Hazards Model . . . . . . . . . 281

9.3.1 The Log-Rank Test for Comparing Groups . . . . . . . . . . 281
9.3.2 Cox Proportional Hazards Survival Model  . . . . . . . . . . 282

9.4 Parsimonious Model for Survival Analysis . . . . . . . . . . . . . . . . . 285
9.4.1 Grid Search to Build a Parsimonious Model . . . . . . . . . 285
9.4.2 Random Forest Survival Analysis Model . . . . . . . . . . . . 289

9.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.5.1 Score Based on Outcome Counts . . . . . . . . . . . . . . . . . . 293
9.5.2 Brier Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.5.3 Area Under the Curve (ROC, AUC) . . . . . . . . . . . . . . . . 294
9.5.4 Concordance Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec22
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec22
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec23
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec23
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec24
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec24
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec25
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec25
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec26
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec26
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec27
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Sec27
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_9
http://dx.doi.org/10.1007/978-981-99-0353-5_9
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Bib1


Contents xiii

10 Computational Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
10.1 Introduction to Computational Techniques . . . . . . . . . . . . . . . . . 311
10.2 Frequent Itemsets and Market Basket Analysis (MBA)  . . . . . . . 311

10.2.1 Frequent Itemsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.2.2 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . . 313
10.2.3 The Apriori Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 314
10.2.4 Generation of Frequent Itemsets—An Example . . . . . . 315
10.2.5 Pruning—An Example with 3-item Itemset . . . . . . . . . . 317
10.2.6 Association Rule Mining—An Example . . . . . . . . . . . . 318
10.2.7 Algorithms Used in Market Bask Analysis . . . . . . . . . . 323

10.3 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
10.3.1 Social Networks—Introduction and Overview . . . . . . . 324
10.3.2 Basics of Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . 324
10.3.3 Understanding NetworkX Package  . . . . . . . . . . . . . . . . 326
10.3.4 Analysis of Social Networks . . . . . . . . . . . . . . . . . . . . . 328
10.3.5 The Betweenness of Edges  . . . . . . . . . . . . . . . . . . . . . . 329
10.3.6 Community Detection: Girvan-Newman Algorithm . . . . 330
10.3.7 Community Detection: Correlation Clustering  . . . . . . . 332

10.4 Recommendation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
10.4.1 Content-Based Recommendation . . . . . . . . . . . . . . . . . . 336
10.4.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 337
10.4.3 Collaborative filtering (User-User)—Example  . . . . . . . 338
10.4.4 Collaborative Filtering (Item-Item) . . . . . . . . . . . . . . . . 340
10.4.5 UV Decomposition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

11 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
11.1 Exploring Supervised Machine Learning  . . . . . . . . . . . . . . . . . . 351
11.2 Learning by Gradient Descent Optimization . . . . . . . . . . . . . . . . 352

11.2.1 Regression Analysis: From Exact Solutions  
to Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

11.2.2 Gradient Descent Optimization Techniques . . . . . . . . . . 354
11.2.3 Stochastic Gradient Descent Regressor . . . . . . . . . . . . . 358

11.3 Regularization for Smoothening  . . . . . . . . . . . . . . . . . . . . . . . . . 360
11.3.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
11.3.2 Lasso Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
11.3.3 Elastic Net Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 362

11.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
11.4.1 Regularization in Classification . . . . . . . . . . . . . . . . . . . 365
11.4.2 Stochastic Gradient Descent Classifier  . . . . . . . . . . . . . 367

11.5 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
11.6 Building Robust Machine Learning Models . . . . . . . . . . . . . . . . 376

11.6.1 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 377
11.6.2 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
11.6.3 Bias-Variance Trade-Off  . . . . . . . . . . . . . . . . . . . . . . . . 381

http://dx.doi.org/10.1007/978-981-99-0353-5_10
http://dx.doi.org/10.1007/978-981-99-0353-5_10
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec22
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec22
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec23
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Sec23
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_11
http://dx.doi.org/10.1007/978-981-99-0353-5_11
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec17


Contentsxiv

11.6.4 Train-Test Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 382
11.6.5 Train, Validate, Test Split . . . . . . . . . . . . . . . . . . . . . . . . 383
11.6.6 Receiver Operating Characteristic: ROC/AUC  

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

12 Artificial Intelligence and Deep Neural Networks . . . . . . . . . . . . . . . 391
12.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
12.2 The Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

12.2.1 Supervised Learning  . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
12.2.2 Unsupervised Learning  . . . . . . . . . . . . . . . . . . . . . . . . . 397
12.2.3 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 397
12.2.4 Reinforcement Learning  . . . . . . . . . . . . . . . . . . . . . . . . 398

12.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
12.4 The Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

12.4.1 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
12.4.2 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
12.4.3 Network Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
12.4.4 The Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
12.4.5 The Loss Function (Cost Function) . . . . . . . . . . . . . . . . 403
12.4.6 Optimization Techniques (for Learning) . . . . . . . . . . . . 404
12.4.7 Regularization Techniques (for Smoothening)  . . . . . . . 405
12.4.8 NN Architectures, Training Challenges,  

and Transfer Learning  . . . . . . . . . . . . . . . . . . . . . . . . . . 405
12.4.9 Keras and TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . 406

12.5 Simple Feed-Forward Neural Network (FFNN) . . . . . . . . . . . . . 406
12.5.1 FFNN—Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . 407
12.5.2 An FFNN for Diamond Price Prediction . . . . . . . . . . . . 408

12.6 Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . . . . . . 414
12.6.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
12.6.2 Feature Extraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
12.6.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

12.7 Recurrent Neural Network (RNN) and LSTM  . . . . . . . . . . . . . . 423
12.7.1 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
12.7.2 Long Short-Term Memory (LSTM) . . . . . . . . . . . . . . . . 425
12.7.3 LSTM for Power Demand Prediction  . . . . . . . . . . . . . . 426

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_12
http://dx.doi.org/10.1007/978-981-99-0353-5_12
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec1
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec2
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec3
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec4
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec5
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec6
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec7
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec8
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec9
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec10
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec11
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec12
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec13
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec14
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec15
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec16
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec17
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec18
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec19
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec20
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec21
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec22
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec22
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec23
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec23
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec24
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec24
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec26
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec26
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec27
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec27
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec28
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec28
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec29
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Sec29
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Bib1
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Bib1


xv

About the Author

Srikrishnan Sundararajan is presently the Dean of Computer Science and En-
gineering at the Adi Shankara Institute of Engineering and Technology in Kaladi, 
Kerala, India. He has held tenured and visiting professor positions in the field of 
computer science and business analytics for over 12 years at various institutions, 
including the Kerala University of Digital Sciences, Innovation, and Technology 
in Thiruvananthapuram; Loyola Institute of Business Administration in Chennai; 
LM Thapar School of Management in Chandigarh; Agni College of Technology in 
Chennai; and SCMS-Cochin in Kerala.

Furthermore, he has over 25 years of experience as an IT consultant, leading 
multicultural teams engaged in information systems development across the USA, 
the UK, Japan, and India. His professional journey includes collaborations with 
prominent organizations like Tata Consultancy Services, Covansys Inc. USA, UST 
Global, HCL Technologies Ltd., and others.

His educational background comprises a Ph.D. degree from Cochin University 
of Science and Technology in Kerala, a Master of Technology degree from the Indi-
an Institute of Technology in Kharagpur, and a Bachelor of Technology degree from 
the College of Engineering in Thiruvananthapuram.



xvii

List of Figures

Fig. 1.1 The history and evolution of business analytics  . . . . . . . . . . . . .  5
Fig. 1.2 Data analytics schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Fig. 1.3 Data visualization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Fig. 2.1 Measurement types, input variables, and outcome/target  

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Fig. 3.1 Box Plot—mass/species/island . . . . . . . . . . . . . . . . . . . . . . . . . .  85
Fig. 3.2 Histogram—mass/species/island . . . . . . . . . . . . . . . . . . . . . . . . .  86
Fig. 3.3 Scatter plot and KDE plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86
Fig. 3.4 Pandas plot (Histogram of all Numeric Variables)  . . . . . . . . . . .  87
Fig. 3.5 matplotlib.pyplot—scatter plot of all pairs of numeric  

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Fig. 3.6 a Experiment and outcome space. b probability  

of events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Fig. 3.7 Fare coin toss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Fig. 3.8 Rolling fair die(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91
Fig. 3.9 Binomial and Poisson Distributions  . . . . . . . . . . . . . . . . . . . . . .  97
Fig. 3.10 The probability density function (PDF) of a standard normal 

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Fig. 3.11 Measures of Shape – Negative Skew, Symmetric,  

and Positive Skew  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Fig. 3.12 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
Fig. 3.13 t-Distribution Versus Standard Normal Distribution . . . . . . . . . .  101
Fig. 3.14 Chi-Square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Fig. 3.15 Sampling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104
Fig. 3.16 Distribution of sample means, for different sample sizes . . . . . .  105
Fig. 3.17 Point estimate, and level of significance (α) . . . . . . . . . . . . . . . .  106
Fig. 4.1 H0, Ha, critical value, level of significance, and power . . . . . . . .  117
Fig. 4.2 Hypothesis testing—comparison of means—tutorial  

coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
Fig. 4.3 Schematic diagram for two independent samples t-test. . . . . . . .  120
Fig. 4.4 Multiple box plots—body mass by species by Island . . . . . . . . .  121
Fig. 4.5 Hypothesis testing: two-sided t-test . . . . . . . . . . . . . . . . . . . . . . .  124

http://dx.doi.org/10.1007/978-981-99-0353-5_1#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_1#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_2#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig7
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig8
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig9
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig10
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig11
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig12
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig13
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig14
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig15
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig16
http://dx.doi.org/10.1007/978-981-99-0353-5_3#Fig17
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig5


List of Figuresxviii

Fig. 4.6 Hypothesis testing: one-sided t-test . . . . . . . . . . . . . . . . . . . . . . .  125
Fig. 4.7 Chicken weight by diet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130
Fig. 4.8 Critical value for a given df in chi-square test . . . . . . . . . . . . . . .  133
Fig. 4.9 Footfalls—associated chi-square statistic and critical value . . . .  135
Fig. 5.1 Positive and negative correlations . . . . . . . . . . . . . . . . . . . . . . . .  146
Fig. 5.2 Explained and unexplained variation in regression model  . . . . .  152
Fig. 5.3 Distribution of the variables influencing software project  

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159
Fig. 5.4 Residuals plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Fig. 5.5 Partial regression plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Fig. 5.6 Partial regression and residuals plots for ‘project plan’ . . . . . . . .  165
Fig. 6.1 Numeric prediction and classification . . . . . . . . . . . . . . . . . . . . .  186
Fig. 6.2 The Iris flowers data description . . . . . . . . . . . . . . . . . . . . . . . . .  187
Fig. 6.3 Logit function and inverse logit (or sigmoid) function . . . . . . . .  189
Fig. 6.4 Complete decision tree diagram  . . . . . . . . . . . . . . . . . . . . . . . . .  194
Fig. 6.5 Decision tree diagram and corresponding rules . . . . . . . . . . . . . .  195
Fig. 6.6 Support vectors, margins, and Kernel trick . . . . . . . . . . . . . . . . .  201
Fig. 6.7 A Bayesian Belief Network for CRM . . . . . . . . . . . . . . . . . . . . .  203
Fig. 6.8 Factors affecting peripheral sensory neuropathy . . . . . . . . . . . . .  205
Fig. 6.9 Decision tree for two-way classification of Virginica  

and Versicolor flowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
Fig. 7.1 Variable reduction using factor analysis  . . . . . . . . . . . . . . . . . . .  220
Fig. 7.2 Scree plot showing two prominent factors. . . . . . . . . . . . . . . . . .  221
Fig. 7.3 Reduction of 9 variables to 3 factors . . . . . . . . . . . . . . . . . . . . . .  222
Fig. 7.4 Variable reduction using factor analysis  . . . . . . . . . . . . . . . . . . .  224
Fig. 7.5 Structural equation model representing software project  

characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226
Fig. 8.1 Popular distance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
Fig. 8.2 Dendrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246
Fig. 8.3 Three clusters solution and six clusters solution . . . . . . . . . . . . .  246
Fig. 8.4 K-Means silhouette score  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
Fig. 8.5 K-means Calinski-Harabasz score . . . . . . . . . . . . . . . . . . . . . . . .  253
Fig. 8.6 Clustering scores when ground truth is known . . . . . . . . . . . . . .  254
Fig. 8.7 Scree plot to determine the optimum number clusters  . . . . . . . .  256
Fig. 8.8 Social network clusters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
Fig. 8.9 Clustering streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264
Fig. 9.1 A survival study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274
Fig. 9.2 Kaplan–Meier survival probability—veterans lung cancer . . . . .  275
Fig. 9.3 Kaplan Meier survival probability of breast cancer patients . . . .  279
Fig. 9.4 KM survival probability by categories (ER type  

and Grade) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280
Fig. 9.5 Stratification of sample data  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281
Fig. 9.6 Area under the curve for 4 subjects {0, 1, 2, 3}  . . . . . . . . . . . . .  292
Fig. 9.7 ROC curve—TPR versus FPR . . . . . . . . . . . . . . . . . . . . . . . . . . .  292

http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig7
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig8
http://dx.doi.org/10.1007/978-981-99-0353-5_4#Fig9
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_5#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig7
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig8
http://dx.doi.org/10.1007/978-981-99-0353-5_6#Fig9
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_7#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig7
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig8
http://dx.doi.org/10.1007/978-981-99-0353-5_8#Fig9
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig7


List of Figures xix

Fig. 9.8 ROC curve of the Top 9 features and their concordance  
index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  298

Fig. 9.9 AUC from cox PH versus RSF model . . . . . . . . . . . . . . . . . . . . .  301
Fig. 10.1 Market basket analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312
Fig. 10.2 Types of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325
Fig. 10.3 Graph, incidence matrix, adjacency matrix . . . . . . . . . . . . . . . . .  325
Fig. 10.4 NetworkX graph examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327
Fig. 10.5 Histogram of degree of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . .  328
Fig. 10.6 Betweenness of edges—an example . . . . . . . . . . . . . . . . . . . . . .  329
Fig. 10.7 Girvan-Newman algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331
Fig. 10.8 West Virginia student fraternity community  . . . . . . . . . . . . . . . .  332
Fig. 10.9 West Virginia student fraternity-clustering  . . . . . . . . . . . . . . . . .  333
Fig. 10.10 Clustering problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346
Fig. 11.1 Supervised learning—classification and regression  . . . . . . . . . .  352
Fig. 11.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353
Fig. 11.3 Gradient descent and oscillations  . . . . . . . . . . . . . . . . . . . . . . . .  356
Fig. 11.4 Local minimum, global minimum . . . . . . . . . . . . . . . . . . . . . . . .  357
Fig. 11.5 Processing pipeline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357
Fig. 11.6 Regularization in polynomial regression . . . . . . . . . . . . . . . . . . .  361
Fig. 11.7 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  379
Fig. 11.8 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  379
Fig. 11.9 Random forest by random data sampling  . . . . . . . . . . . . . . . . . .  380
Fig. 11.10 Random forest by feature randomness  . . . . . . . . . . . . . . . . . . . .  381
Fig. 11.11 Hard voting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  381
Fig. 11.12 Train-test convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  382
Fig. 11.13 Train, validate, test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  384
Fig. 11.14 ROC/AUC analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  384
Fig. 12.1 Machine intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  395
Fig. 12.2 Deep learning—a subset of AI . . . . . . . . . . . . . . . . . . . . . . . . . . .  399
Fig. 12.3 Neuron, the building block of neural networks . . . . . . . . . . . . . .  400
Fig. 12.4 Activation functions—ReLU and Sigmoid . . . . . . . . . . . . . . . . .  401
Fig. 12.5 Feed-forward network with backpropagation of error . . . . . . . . .  402
Fig. 12.6 Feed-forward neural network with weight vectors  . . . . . . . . . . .  407
Fig. 12.7 A neural network for diamond price prediction. . . . . . . . . . . . . .  409
Fig. 12.8 ANN iterations performance—accuracy and loss . . . . . . . . . . . .  414
Fig. 12.9 CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414
Fig. 12.10 Sample images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  419
Fig. 12.11 The cross-validation history . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  423
Fig. 12.12 RNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424
Fig. 12.13 LSTM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  425
Fig. 12.14 LSTM for power demand prediction . . . . . . . . . . . . . . . . . . . . . .  430

http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig8
http://dx.doi.org/10.1007/978-981-99-0353-5_9#Fig9
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig7
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig8
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig9
http://dx.doi.org/10.1007/978-981-99-0353-5_10#Fig10
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig7
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig8
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig9
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig10
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig11
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig12
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig13
http://dx.doi.org/10.1007/978-981-99-0353-5_11#Fig14
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig1
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig2
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig3
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig4
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig5
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig6
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig7
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig8
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig9
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig10
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig11
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig12
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig13
http://dx.doi.org/10.1007/978-981-99-0353-5_12#Fig14


xxi

List of Tutorials

Tutorial 1.3.1 Diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Tutorial 1.3.2 Planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Tutorial 1.3.3 Penguins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Tutorial 1.3.4 Chickweight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Tutorial 1.3.5 Iris. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Tutorial 1.3.6 Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Tutorial 1.3.7 IT Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Tutorial 1.3.8 Breast Cancer - Gene Prognostic Signature . . . . . . . . . . . . 18
Tutorial 1.3.9 German Breast Cancer Study Group 2 . . . . . . . . . . . . . . . . 20
Tutorial 1.3.10 West Virginia Student Fraternity . . . . . . . . . . . . . . . . . . . . 21
Tutorial 1.3.11 The CIFAR-10 Dataset and CIFAR-100 Dataset . . . . . . . . 21
Tutorial 1.3.12 MNIST Handwritten Character Recognition . . . . . . . . . . . 21
Tutorial 1.3.13 PowerConsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Tutorial 1.3.14 Bank Marketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Tutorial 2.2.1 Variables and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
Tutorial 2.2.2 Variable Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Tutorial 2.2.3 Basic Data Types int, float, str, bool. . . . . . . . . . . . . . . . . . 35
Tutorial 2.2.4 Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Tutorial 2.2.5 Type Setting and Conversion . . . . . . . . . . . . . . . . . . . . . . . 35
Tutorial 2.2.6 Assignment Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Tutorial 2.2.7 Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Tutorial 2.2.8 Comparison Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Tutorial 2.2.9 Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Tutorial 2.2.10 Strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Tutorial 2.2.11 Print Formatting - Insert Variables in Strings. . . . . . . . . . . 37
Tutorial 2.3.1 Advanced Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Tutorial 2.3.2 List operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Tutorial 2.3.3 Tuple operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Tutorial 2.3.4 Range construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Tutorial 2.3.5 Dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Tutorial 2.3.6 Set operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Tutorial 2.4.1 Control Flow - introductory example . . . . . . . . . . . . . . . . . 44

http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.1	Diamonds		11#Tutorial 1.3.1	Diamonds		11
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.2	Planets		12#Tutorial 1.3.2	Planets		12
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.3	Penguins		13#Tutorial 1.3.3	Penguins		13
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.4	Chickweight		13#Tutorial 1.3.4	Chickweight		13
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.5	Iris		15#Tutorial 1.3.5	Iris		15
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.6	Tips		16#Tutorial 1.3.6	Tips		16
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.7	IT Projects		17#Tutorial 1.3.7	IT Projects		17
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.8	Breast Cancer - Gene Prognostic Signature		18#Tutorial 1.3.8	Breast Cancer - Gene Prognostic Signature		18
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.9	German Breast Cancer Study Group 2		20#Tutorial 1.3.9	German Breast Cancer Study Group 2		20
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.10	West Virginia Student Fraternity		21#Tutorial 1.3.10	West Virginia Student Fraternity		21
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.11	The CIFAR-10 Dataset and CIFAR-100 Dataset		21#Tutorial 1.3.11	The CIFAR-10 Dataset and CIFAR-100 Dataset		21
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.12	MNIST Handwritten Character Recognition		21#Tutorial 1.3.12	MNIST Handwritten Character Recognition		21
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.13	PowerConsumption		21#Tutorial 1.3.13	PowerConsumption		21
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 1.3.14	Bank Marketing		22#Tutorial 1.3.14	Bank Marketing		22
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.1	Variables and Operators			34#Tutorial 2.2.1	Variables and Operators			34
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.2	Variable Names		34#Tutorial 2.2.2	Variable Names		34
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.3	Basic Data Types int, float, str, bool		35#Tutorial 2.2.3	Basic Data Types int, float, str, bool		35
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.4	Comments		35#Tutorial 2.2.4	Comments		35
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.5	Type Setting and Conversion		35#Tutorial 2.2.5	Type Setting and Conversion		35
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.6	Assignment Operators		36#Tutorial 2.2.6	Assignment Operators		36
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.7	Arithmetic Operators		36#Tutorial 2.2.7	Arithmetic Operators		36
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.8	Comparison Operators		36#Tutorial 2.2.8	Comparison Operators		36
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.9	Logical Operators		36#Tutorial 2.2.9	Logical Operators		36
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.10	Strings		37#Tutorial 2.2.10	Strings		37
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.2.11	Print Formatting - Insert Variables in Strings		37#Tutorial 2.2.11	Print Formatting - Insert Variables in Strings		37
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.3.1	Advanced Data Types		38#Tutorial 2.3.1	Advanced Data Types		38
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.3.2	List operations		39#Tutorial 2.3.2	List operations		39
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.3.3	Tuple operations		40#Tutorial 2.3.3	Tuple operations		40
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.3.4	Range construct		41#Tutorial 2.3.4	Range construct		41
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.3.5	Dictionary		41#Tutorial 2.3.5	Dictionary		41
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.3.6	Set operations		42#Tutorial 2.3.6	Set operations		42
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.1	Control Flow - introductory example		44#Tutorial 2.4.1	Control Flow - introductory example		44


List of Tutorialsxxii

Tutorial 2.4.2 if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Tutorial 2.4.3 if ... else ... example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tutorial 2.4.4 if ... elif ... else ... example . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tutorial 2.4.5 Nested if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Tutorial 2.4.6 pass (a verb used in if statements) . . . . . . . . . . . . . . . . . . . 46
Tutorial 2.4.7 for loop with range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Tutorial 2.4.8 for loop with range (start, stop, step) . . . . . . . . . . . . . . . . . 46
Tutorial 2.4.9 for loop with a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Tutorial 2.4.10 for loop with list, tuple, set. . . . . . . . . . . . . . . . . . . . . . . . . 47
Tutorial 2.4.11 break and continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Tutorial 2.4.12 list comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Tutorial 2.4.13 iterations through a dictionary . . . . . . . . . . . . . . . . . . . . . . 48
Tutorial 2.4.14 while loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Tutorial 2.5.1 Functions and Libraries – An introductory example . . . . . 50
Tutorial 2.5.2 define your function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Tutorial 2.5.3 lambda - the function without a name . . . . . . . . . . . . . . . . 51
Tutorial 2.5.4 commonly used in-built library functions . . . . . . . . . . . . . 51
Tutorial 2.5.5 math library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Tutorial 2.5.6 date time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Tutorial 2.5.7 random numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Tutorial 2.5.8 advanced string functions. . . . . . . . . . . . . . . . . . . . . . . . . . 52
Tutorial 2.5.9 regular expressions library . . . . . . . . . . . . . . . . . . . . . . . . . 53
Tutorial 2.6.1 pandas - explore the ‘iris’ dataset . . . . . . . . . . . . . . . . . . . . 54
Tutorial 2.6.2 pandas – accessing a subset of rows/columns . . . . . . . . . . 56
Tutorial 2.6.3 pandas - filter, to access a subset of data . . . . . . . . . . . . . . 57
Tutorial 2.6.4 pandas – sort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Tutorial 2.6.5 Correlation between the variables (using pandas  

function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Tutorial 2.7.1 NumPy - generating random numbers . . . . . . . . . . . . . . . . 60
Tutorial 2.7.2 NumPy - creating ndarray using data enumeration . . . . . . 60
Tutorial 2.7.3 NumPy - creating ndarray using zeros, ones, arrange . . . . 60
Tutorial 2.7.4 NumPy - accessing array elements / subsetting . . . . . . . . . 61
Tutorial 2.7.5 NumPy - rules for setting indices in subsetting . . . . . . . . . 61
Tutorial 2.7.6 NumPy - how to copy an array. . . . . . . . . . . . . . . . . . . . . . 62
Tutorial 2.7.7 NumPy - Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Tutorial 2.7.8 NumPy Functions – Set, Mean, Median, SD, Round. . . . . 63
Tutorial 2.7.9 NumPy - Flatten (reshape to 1D) . . . . . . . . . . . . . . . . . . . . 64
Tutorial 2.7.10 NumPy Advanced - ndarray Reshape; dimensions  

MN to PQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Tutorial 2.7.11 NumPy Advanced - ndarray Reshape; dimensions  

MN to PQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Tutorial 2.7.12 NumPy Advanced - ndarray search . . . . . . . . . . . . . . . . . . 66
Tutorial 2.7.13 NumPy Advanced - simple sort . . . . . . . . . . . . . . . . . . . . . 66
Tutorial 2.7.14 NumPy Advanced - sort dimensions . . . . . . . . . . . . . . . . . 66
Tutorial 2.7.15 NumPy Advanced - argsort . . . . . . . . . . . . . . . . . . . . . . . . 67

http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.2	if		44#Tutorial 2.4.2	if		44
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.3	if ... else ... example		45#Tutorial 2.4.3	if ... else ... example		45
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.4	if ... elif ... else ... example		45#Tutorial 2.4.4	if ... elif ... else ... example		45
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.5	Nested if		46#Tutorial 2.4.5	Nested if		46
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.6	pass (a verb used in if statements)		46#Tutorial 2.4.6	pass (a verb used in if statements)		46
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.7	for loop with range		46#Tutorial 2.4.7	for loop with range		46
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.8	for loop with range (start, stop, step)		46#Tutorial 2.4.8	for loop with range (start, stop, step)		46
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.9	for loop with a string		47#Tutorial 2.4.9	for loop with a string		47
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.10	for loop with list, tuple, set		47#Tutorial 2.4.10	for loop with list, tuple, set		47
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.11	break and continue		47#Tutorial 2.4.11	break and continue		47
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.12	list comprehension		48#Tutorial 2.4.12	list comprehension		48
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.13	iterations through a dictionary		48#Tutorial 2.4.13	iterations through a dictionary		48
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.4.14	while loop		49#Tutorial 2.4.14	while loop		49
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.1	Functions and Libraries – An introductory example		50#Tutorial 2.5.1	Functions and Libraries – An introductory example		50
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.2	define your function		50#Tutorial 2.5.2	define your function		50
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.3	lambda - the function without a name		51#Tutorial 2.5.3	lambda - the function without a name		51
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.4	commonly used in-built library functions		51#Tutorial 2.5.4	commonly used in-built library functions		51
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.5	math library		52#Tutorial 2.5.5	math library		52
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.6	date time		52#Tutorial 2.5.6	date time		52
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.7	random numbers		52#Tutorial 2.5.7	random numbers		52
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.8	advanced string functions		52#Tutorial 2.5.8	advanced string functions		52
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.5.9	regular expressions library		53#Tutorial 2.5.9	regular expressions library		53
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.6.1	pandas - explore the ‘iris’ dataset		54#Tutorial 2.6.1	pandas - explore the ‘iris’ dataset		54
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.6.2	pandas – accessing a subset of rowscolumns		56#Tutorial 2.6.2	pandas – accessing a subset of rowscolumns		56
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.6.3	pandas - filter, to access a subset of data		57#Tutorial 2.6.3	pandas - filter, to access a subset of data		57
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.6.4	pandas – sort		59#Tutorial 2.6.4	pandas – sort		59
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.6.5	Correlation between the variables (using pandas function)		59#Tutorial 2.6.5	Correlation between the variables (using pandas function)		59
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.1	NumPy - generating random numbers		60#Tutorial 2.7.1	NumPy - generating random numbers		60
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.2	NumPy - creating ndarray using data enumeration		60#Tutorial 2.7.2	NumPy - creating ndarray using data enumeration		60
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.3	NumPy - creating ndarray using zeros, ones, arrange		60#Tutorial 2.7.3	NumPy - creating ndarray using zeros, ones, arrange		60
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.4	NumPy - accessing array elements  subsetting		61#Tutorial 2.7.4	NumPy - accessing array elements  subsetting		61
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.5	NumPy - rules for setting indices in subsetting		61#Tutorial 2.7.5	NumPy - rules for setting indices in subsetting		61
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.6	NumPy - how to copy an array		62#Tutorial 2.7.6	NumPy - how to copy an array		62
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.7	NumPy - Filter		62#Tutorial 2.7.7	NumPy - Filter		62
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.8	NumPy Functions – Set, Mean, Median, SD, Round		63#Tutorial 2.7.8	NumPy Functions – Set, Mean, Median, SD, Round		63
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.9	NumPy - Flatten (reshape to 1D)		64#Tutorial 2.7.9	NumPy - Flatten (reshape to 1D)		64
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.10	NumPy Advanced - ndarray Reshape; dimensions MN to PQ		64#Tutorial 2.7.10	NumPy Advanced - ndarray Reshape; dimensions MN to PQ		64
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.11	NumPy Advanced - ndarray Reshape; dimensions MN to PQR		65#Tutorial 2.7.11	NumPy Advanced - ndarray Reshape; dimensions MN to PQR		65
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.12	NumPy Advanced - ndarray search		66#Tutorial 2.7.12	NumPy Advanced - ndarray search		66
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.13	NumPy Advanced - simple sort		66#Tutorial 2.7.13	NumPy Advanced - simple sort		66
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.14	NumPy Advanced - sort dimensions		66#Tutorial 2.7.14	NumPy Advanced - sort dimensions		66
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.15	NumPy Advanced - argsort		67#Tutorial 2.7.15	NumPy Advanced - argsort		67


List of Tutorials xxiii

Tutorial 2.7.16 NumPy - join and split arrays. . . . . . . . . . . . . . . . . . . . . . . 68
Tutorial 2.8.1 Preprocessing:  recode category -> integer . . . . . . . . . . . . 70
Tutorial 2.8.2 Preprocessing: handling missing values. . . . . . . . . . . . . . . 71
Tutorial 2.8.3 Preprocessing: z-score standardization . . . . . . . . . . . . . . . 72
Tutorial 2.8.4 Preprocessing: categorizing numeric values . . . . . . . . . . . 73
Tutorial 2.8.5 Preprocessing: Creating Pandas DataFrame  

from arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Tutorial 2.8.6 Preprocessing: Exploring Pandas DataFrame  

Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Tutorial 2.8.7 Preprocessing: Pandas to/from NumPy . . . . . . . . . . . . . . . 76
Tutorial 2.8.8 Preprocessing: NumPy to PDF, Write to local disk . . . . . . 76
Tutorial 3.2.1 Data Description by Visual Plots . . . . . . . . . . . . . . . . . . . . 88
Tutorial 3.2.2 Pandas Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Tutorial 3.2.3 Basic Matplotlib Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Tutorial 3.4.1 Random Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Tutorial 3.4.2 Rolling a Die . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Tutorial 3.4.3 Rolling Two Die . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Tutorial 3.4.4 Binomial Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Tutorial 3.4.5 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Tutorial 3.5.1 t Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Tutorial 3.5.2 Chi-Square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Tutorial 3.6.1 Central Limit Theorem Exercise . . . . . . . . . . . . . . . . . . . . 105
Tutorial 4.3 Two Independence Samples t-test . . . . . . . . . . . . . . . . . . . 121
Tutorial 4.3.1 Data Setup; Descriptive statistics . . . . . . . . . . . . . . . . . . . . 122
Tutorial 4.3.2 Bartlet's test - checking the equality of variances . . . . . . . 122
Tutorial 4.3.3 Independent Samples t-test -2 tailed – variance equal . . . . 122
Tutorial 4.3.4 Independent samples t-test – 2 tailed – variance  

not equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Tutorial 4.4  One-Sample t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Tutorial 4.4.1 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Tutorial 4.4.2 One Sample t-test: Is bodymass mean > 3600 . . . . . . . . . . 126
Tutorial 4.4.3 One Sample t-test: Is bodymass mean < 3800 . . . . . . . . . . 126
Tutorial 4.4.4 Cross Verification of the one-tailed t-tests . . . . . . . . . . . . . 126
Tutorial 4.5 Paired Samples t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Tutorial 4.6 Anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Tutorial 4.6.1 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Tutorial 4.6.2 One Way Anova / F test . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Tutorial 4.6.3 Bartlett's test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Tutorial 4.6.4 Checking mean pairwise, assuming normal  

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Tutorial 4.6.5 Pairwise t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Tutorial 4.7 Chi-square test - restaurant tips - footfall . . . . . . . . . . . . . . 134
Tutorial 4.7.1 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Tutorial 4.7.2 Cross Tab of plot footfalls vs gender . . . . . . . . . . . . . . . . . 134
Tutorial 4.7.3 Chi-square test / p-Value method . . . . . . . . . . . . . . . . . . . . 135

http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.7.16	NumPy - join and split arrays		68#Tutorial 2.7.16	NumPy - join and split arrays		68
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.8.1	Preprocessing:  recode category -> integer		70#Tutorial 2.8.1	Preprocessing:  recode category -> integer		70
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.8.2	Preprocessing: handling missing values		71#Tutorial 2.8.2	Preprocessing: handling missing values		71
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.8.3	Preprocessing: z-score standardization		72#Tutorial 2.8.3	Preprocessing: z-score standardization		72
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.8.4	Preprocessing: categorizing numeric values		73#Tutorial 2.8.4	Preprocessing: categorizing numeric values		73
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.8.5	Preprocessing: Creating Pandas DataFrame from arrays		74#Tutorial 2.8.5	Preprocessing: Creating Pandas DataFrame from arrays		74
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.8.6	Preprocessing: Exploring Pandas DataFrame Data structure		74#Tutorial 2.8.6	Preprocessing: Exploring Pandas DataFrame Data structure		74
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.8.7	Preprocessing: Pandas tofrom NumPy		76#Tutorial 2.8.7	Preprocessing: Pandas tofrom NumPy		76
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 2.8.8	Preprocessing: NumPy to PDF, Write to local disk		76#Tutorial 2.8.8	Preprocessing: NumPy to PDF, Write to local disk		76
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.2.1	Data Description by Visual Plots		88#Tutorial 3.2.1	Data Description by Visual Plots		88
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.2.2	Pandas Plot		88#Tutorial 3.2.2	Pandas Plot		88
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.2.3	Basic Matplotlib Plot		89#Tutorial 3.2.3	Basic Matplotlib Plot		89
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.4.1	Random Numbers		93#Tutorial 3.4.1	Random Numbers		93
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.4.2	Rolling a Die		93#Tutorial 3.4.2	Rolling a Die		93
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.4.3	Rolling Two Die		93#Tutorial 3.4.3	Rolling Two Die		93
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.4.4	Binomial Distribution		94#Tutorial 3.4.4	Binomial Distribution		94
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.4.5	Poisson Distribution		94#Tutorial 3.4.5	Poisson Distribution		94
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.5.1	t Distribution		102#Tutorial 3.5.1	t Distribution		102
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.5.2	Chi-Square Distribution		103#Tutorial 3.5.2	Chi-Square Distribution		103
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 3.6.1	Central Limit Theorem Exercise		105#Tutorial 3.6.1	Central Limit Theorem Exercise		105
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.3	Two Independence Samples t-test		121#Tutorial 4.3	Two Independence Samples t-test		121
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.3.1	Data Setup; Descriptive statistics		122#Tutorial 4.3.1	Data Setup; Descriptive statistics		122
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.3.2	Bartlet's test - checking the equality of variances		122#Tutorial 4.3.2	Bartlet's test - checking the equality of variances		122
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.3.3	Independent Samples t-test -2 tailed – variance equal		122#Tutorial 4.3.3	Independent Samples t-test -2 tailed – variance equal		122
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.3.4	Independent samples t-test – 2 tailed – variance not equal		123#Tutorial 4.3.4	Independent samples t-test – 2 tailed – variance not equal		123
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.4		One-Sample t-test		126#Tutorial 4.4		One-Sample t-test		126
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.4.1	Data Setup		126#Tutorial 4.4.1	Data Setup		126
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.4.2	One Sample t-test: Is bodymass mean > 3600		126#Tutorial 4.4.2	One Sample t-test: Is bodymass mean > 3600		126
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.4.3	One Sample t-test: Is bodymass mean < 3800		126#Tutorial 4.4.3	One Sample t-test: Is bodymass mean < 3800		126
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.4.4	Cross Verification of the one-tailed t-tests		126#Tutorial 4.4.4	Cross Verification of the one-tailed t-tests		126
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.5	Paired Samples t-test		128#Tutorial 4.5	Paired Samples t-test		128
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.6	Anova		130#Tutorial 4.6	Anova		130
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.6.1	Data Setup		130#Tutorial 4.6.1	Data Setup		130
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.6.2	One Way Anova  F test		131#Tutorial 4.6.2	One Way Anova  F test		131
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.6.3	Bartlett's test		131#Tutorial 4.6.3	Bartlett's test		131
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.6.4	Checking mean pairwise, assuming normal distribution		131#Tutorial 4.6.4	Checking mean pairwise, assuming normal distribution		131
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.6.5	Pairwise t-test		131#Tutorial 4.6.5	Pairwise t-test		131
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.7	Chi-square test - restaurant tips - footfall		134#Tutorial 4.7	Chi-square test - restaurant tips - footfall		134
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.7.1	Data Setup		134#Tutorial 4.7.1	Data Setup		134
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.7.2	Cross Tab of plot footfalls vs gender		134#Tutorial 4.7.2	Cross Tab of plot footfalls vs gender		134
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.7.3	Chi-square test  p-Value method		135#Tutorial 4.7.3	Chi-square test  p-Value method		135


List of Tutorialsxxiv

Tutorial 4.7.4 Chi-Square test / Critical Value Method. . . . . . . . . . . . . . . 135
Tutorial 5.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Tutorial 5.1.1 Correlation Using NumPy Function. . . . . . . . . . . . . . . . . . 147
Tutorial 5.1.2 Correlation Using SciPy Function . . . . . . . . . . . . . . . . . . . 147
Tutorial 5.2 Linear regression - Using statsmodels / ols . . . . . . . . . . . . 154
Tutorial 5.4 Detailed Regression Analysis – Using  

statsmodels / OLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Tutorial 5.4.1 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Tutorial 5.4.2 The Distribution of the Feature Variables (X) . . . . . . . . . . 160
Tutorial 5.4.3 Linear Regression (using OLS) . . . . . . . . . . . . . . . . . . . . . 161
Tutorial 5.4.4 Discarding the Variables that are Not Significant. . . . . . . . 162
Tutorial 5.4.5 Variance Inflation Factor (VIF) . . . . . . . . . . . . . . . . . . . . . 163
Tutorial 5.4.6 The Residual Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Tutorial 5.4.7 Partial Regression Plots - Brief . . . . . . . . . . . . . . . . . . . . . 167
Tutorial 5.4.8 Partial Regression Plot – Detailed . . . . . . . . . . . . . . . . . . . 168
Tutorial 5.5.1 Forward Regression Method . . . . . . . . . . . . . . . . . . . . . . . 170
Tutorial 5.5.2 The Backward Regression Method . . . . . . . . . . . . . . . . . . 170
Tutorial 5.6 Feature Ranking - Manual Determination . . . . . . . . . . . . . 172
Tutorial 5.6.1 Inspect the partial regression coefficients |'bi'| . . . . . . . . . . 172
Tutorial 5.6.2 Bivariate (Xi ~ y) Correlation. . . . . . . . . . . . . . . . . . . . . . . 173
Tutorial 5.6.3 Compute Partial Correlations . . . . . . . . . . . . . . . . . . . . . . . 173
Tutorial 5.6.4 Recursive Feature Elimination . . . . . . . . . . . . . . . . . . . . . . 174
Tutorial 5.6.5 RFE using elastic net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Tutorial 5.6.6 RFE using Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . 175
Tutorial 5.6.7 RFECV:  Rank & Select optimum number of variables . . . . 176
Tutorial 5.7 Polynomial Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Tutorial 5.7.1 Diamonds - Data Pre-processing . . . . . . . . . . . . . . . . . . . . 177
Tutorial 5.7.2 Diamonds - OLS Linear Regression . . . . . . . . . . . . . . . . . 177
Tutorial 5.7.3 Polynomial Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Tutorial 6.1 The Iris Flowers Data Description . . . . . . . . . . . . . . . . . . . 186
Tutorial 6.3.1 Binary Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 190
Tutorial 6.3.2 Logistic Regression – Multi-class classification . . . . . . . . 191
Tutorial 6.4.1 Linear Discriminant Analysis. . . . . . . . . . . . . . . . . . . . . . . 193
Tutorial 6.5 Decision Tree Classification. . . . . . . . . . . . . . . . . . . . . . . . 198
Tutorial 6.5.1 Decision Tree Classification Report . . . . . . . . . . . . . . . . . . 198
Tutorial 6.5.2 Decision Tree Plot (simple) . . . . . . . . . . . . . . . . . . . . . . . . 199
Tutorial 6.5.3 Decision Tree Textual Description . . . . . . . . . . . . . . . . . . . 200
Tutorial 6.5.4 Decision Tree elegant Graph . . . . . . . . . . . . . . . . . . . . . . . 200
Tutorial 6.6 Support Vector Classification . . . . . . . . . . . . . . . . . . . . . . . 201
Tutorial 7.1 Factor Analysis Case Study - Basics . . . . . . . . . . . . . . . . . 216
Tutorial 7.3 Factor Analysis Case Study - Detailed . . . . . . . . . . . . . . . . 225
Tutorial 7.3.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Tutorial 7.3.2 Data Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Tutorial 7.3.3 Factor analysis: Iteration - 1. . . . . . . . . . . . . . . . . . . . . . . . 227
Tutorial 7.3.4 Factor analysis: Iteration - 2. . . . . . . . . . . . . . . . . . . . . . . . 228

http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 4.7.4	Chi-Square test  Critical Value Method		135#Tutorial 4.7.4	Chi-Square test  Critical Value Method		135
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.1	Correlation		147#Tutorial 5.1	Correlation		147
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.1.1	Correlation Using NumPy Function		147#Tutorial 5.1.1	Correlation Using NumPy Function		147
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.1.2	Correlation Using SciPy Function		147#Tutorial 5.1.2	Correlation Using SciPy Function		147
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.2	Linear regression - Using statsmodels  ols		154#Tutorial 5.2	Linear regression - Using statsmodels  ols		154
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4	Detailed Regression Analysis – Using statsmodels  OLS		160#Tutorial 5.4	Detailed Regression Analysis – Using statsmodels  OLS		160
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4.1	Data Setup		160#Tutorial 5.4.1	Data Setup		160
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4.2	The Distribution of the Feature Variables (X)		160#Tutorial 5.4.2	The Distribution of the Feature Variables (X)		160
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4.3	Linear Regression (using OLS)		161#Tutorial 5.4.3	Linear Regression (using OLS)		161
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4.4	Discarding the Variables that are Not Significant		162#Tutorial 5.4.4	Discarding the Variables that are Not Significant		162
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4.5	Variance Inflation Factor (VIF)		163#Tutorial 5.4.5	Variance Inflation Factor (VIF)		163
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4.6	The Residual Plot		166#Tutorial 5.4.6	The Residual Plot		166
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4.7	Partial Regression Plots - Brief		167#Tutorial 5.4.7	Partial Regression Plots - Brief		167
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.4.8	Partial Regression Plot – Detailed		168#Tutorial 5.4.8	Partial Regression Plot – Detailed		168
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.5.1	Forward Regression Method		170#Tutorial 5.5.1	Forward Regression Method		170
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.5.2	The Backward Regression Method		170#Tutorial 5.5.2	The Backward Regression Method		170
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.6	Feature Ranking - Manual Determination		172#Tutorial 5.6	Feature Ranking - Manual Determination		172
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.6.1	Inspect the partial regression coefficients |'bi'|		172#Tutorial 5.6.1	Inspect the partial regression coefficients |'bi'|		172
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.6.2	Bivariate (Xi ~ y) Correlation		173#Tutorial 5.6.2	Bivariate (Xi ~ y) Correlation		173
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.6.3	Compute Partial Correlations		173#Tutorial 5.6.3	Compute Partial Correlations		173
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.6.4	Recursive Feature Elimination		174#Tutorial 5.6.4	Recursive Feature Elimination		174
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.6.5	RFE using elastic net		175#Tutorial 5.6.5	RFE using elastic net		175
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.6.6	RFE using Ridge Regression		175#Tutorial 5.6.6	RFE using Ridge Regression		175
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.6.7	RFECV:  Rank & Select optimum number of variables		176#Tutorial 5.6.7	RFECV:  Rank & Select optimum number of variables		176
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.7	Polynomial Regression		177#Tutorial 5.7	Polynomial Regression		177
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.7.1	Diamonds - Data Pre-processing		177#Tutorial 5.7.1	Diamonds - Data Pre-processing		177
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.7.2	Diamonds - OLS Linear Regression		177#Tutorial 5.7.2	Diamonds - OLS Linear Regression		177
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 5.7.3	Polynomial Regression		177#Tutorial 5.7.3	Polynomial Regression		177
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.1	The Iris Flowers Data Description		186#Tutorial 6.1	The Iris Flowers Data Description		186
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.3.1	Binary Logistic Regression		190#Tutorial 6.3.1	Binary Logistic Regression		190
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.3.2	Logistic Regression – Multi-class classification		191#Tutorial 6.3.2	Logistic Regression – Multi-class classification		191
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.4.1	Linear Discriminant Analysis		193#Tutorial 6.4.1	Linear Discriminant Analysis		193
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.5	Decision Tree Classification		198#Tutorial 6.5	Decision Tree Classification		198
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.5.1	Decision Tree Classification Report		198#Tutorial 6.5.1	Decision Tree Classification Report		198
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.5.2	Decision Tree Plot (simple)		199#Tutorial 6.5.2	Decision Tree Plot (simple)		199
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.5.3	Decision Tree Textual Description		200#Tutorial 6.5.3	Decision Tree Textual Description		200
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.5.4	Decision Tree elegant Graph		200#Tutorial 6.5.4	Decision Tree elegant Graph		200
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 6.6	Support Vector Classification		201#Tutorial 6.6	Support Vector Classification		201
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.1	Factor Analysis Case Study - Basics		216#Tutorial 7.1	Factor Analysis Case Study - Basics		216
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3	Factor Analysis Case Study - Detailed		225#Tutorial 7.3	Factor Analysis Case Study - Detailed		225
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3.1	Environment Setup		225#Tutorial 7.3.1	Environment Setup		225
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3.2	Data Validation		227#Tutorial 7.3.2	Data Validation		227
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3.3	Factor analysis: Iteration - 1		227#Tutorial 7.3.3	Factor analysis: Iteration - 1		227
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3.4	Factor analysis: Iteration - 2		228#Tutorial 7.3.4	Factor analysis: Iteration - 2		228


List of Tutorials xxv

Tutorial 7.3.5 Factor analysis: Iteration - 3. . . . . . . . . . . . . . . . . . . . . . . . 229
Tutorial 7.3.6 Final Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Tutorial 7.3.7 Compute the Factor Scores. . . . . . . . . . . . . . . . . . . . . . . . . 230
Tutorial 7.3.8 Using Factor Scores for Regression . . . . . . . . . . . . . . . . . . 230
Tutorial 8.2 Hierarchical Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Tutorial 8.2.1 Data Setup and Visualization . . . . . . . . . . . . . . . . . . . . . . . 248
Tutorial 8.2.2 Dendrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Tutorial 8.4.1 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Tutorial 8.4.2 Cluster Count by Silhouette and Calinski_harabasz  

scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Tutorial 8.4.3 Scree Plot to Determine the Cluster Count . . . . . . . . . . . . 258
Tutorial 8.4.4 When the labels known . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Tutorial 9.1 BC Case - Kaplan-Meier Survival Estimate. . . . . . . . . . . . 278
Tutorial 9.1.1 Install Package / Resolve Problems / Setup Data. . . . . . . . 279
Tutorial 9.1.2 Build KM model; Plot KM Model . . . . . . . . . . . . . . . . . . . 279
Tutorial 9.1.3 Compare Survival Under Different 'er' Types . . . . . . . . . . 279
Tutorial 9.1.4 Compare Survival Under Different 'grades' . . . . . . . . . . . . 280
Tutorial 9.3 BC Case - Cox Proportional Hazards Model . . . . . . . . . . . 283
Tutorial 9.3.1 BC Case – Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Tutorial 9.3.2 BC Case – Fit Cox PH Survival Model . . . . . . . . . . . . . . . 283
Tutorial 9.3.3 Log Hazard Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Tutorial 9.3.4 Rank the Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Tutorial 9.4.1 BC Case - Grid Search for a Parsimonious Model. . . . . . . 286
Tutorial 9.4.2 BC Case - Random Forest Survival Analysis  

(RFS) Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Tutorial 9.4.2.1 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Tutorial 9.4.2.2 Build and Test RFS Model . . . . . . . . . . . . . . . . . . . . . . . . . 291
Tutorial 9.4.2.3 Survival Prediction – Plot. . . . . . . . . . . . . . . . . . . . . . . . . . 291
Tutorial 9.4.2.4 Feature Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Tutorial 9.5.1 BC Case - Compare ROC Curve  

and Concordance Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Tutorial 9.5.2 BC Case - Compare the Performance of Estimators  

CPH, RSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Tutorial 10.2  Identifying Frequent Itemsets. . . . . . . . . . . . . . . . . . . . . . . 319
Tutorial 10.2.1 Apriori Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Tutorial 10.2.2 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Tutorial 10.3.1 NetworkX Graph Examples . . . . . . . . . . . . . . . . . . . . . . . . 326
Tutorial 10.3.2 Community Detection Tutorial – Girvan Newman  

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Tutorial 10.3.3 Community Detection - West Virginia Student  

Fraternity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Tutorial 10.3.3.1 Building a Graph Showing Student Connectivity . . . . . . . 333
Tutorial 10.3.3.2 CC-Pivot Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . 334
Tutorial 10.3.3.3 Clustering Nodes using the CC-Pivot Algorithm . . . . . . . . 334
Tutorial 10.3.3.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3.5	Factor analysis: Iteration - 3		229#Tutorial 7.3.5	Factor analysis: Iteration - 3		229
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3.6	Final Check		229#Tutorial 7.3.6	Final Check		229
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3.7	Compute the Factor Scores		230#Tutorial 7.3.7	Compute the Factor Scores		230
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 7.3.8	Using Factor Scores for Regression		230#Tutorial 7.3.8	Using Factor Scores for Regression		230
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 8.2	Hierarchical Clustering		248#Tutorial 8.2	Hierarchical Clustering		248
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 8.2.1	Data Setup and Visualization		248#Tutorial 8.2.1	Data Setup and Visualization		248
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 8.2.2	Dendrogram		248#Tutorial 8.2.2	Dendrogram		248
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 8.4.1	K-Means Clustering		256#Tutorial 8.4.1	K-Means Clustering		256
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 8.4.2	Cluster Count by Silhouette and Calinski_harabasz scores		257#Tutorial 8.4.2	Cluster Count by Silhouette and Calinski_harabasz scores		257
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 8.4.3	Scree Plot to Determine the Cluster Count		258#Tutorial 8.4.3	Scree Plot to Determine the Cluster Count		258
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 8.4.4	When the labels known		259#Tutorial 8.4.4	When the labels known		259
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.1	BC Case - Kaplan-Meier Survival Estimate		278#Tutorial 9.1	BC Case - Kaplan-Meier Survival Estimate		278
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.1.1	Install Package  Resolve Problems  Setup Data		279#Tutorial 9.1.1	Install Package  Resolve Problems  Setup Data		279
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.1.2	Build KM model; Plot KM Model		279#Tutorial 9.1.2	Build KM model; Plot KM Model		279
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.1.3	Compare Survival Under Different 'er' Types		279#Tutorial 9.1.3	Compare Survival Under Different 'er' Types		279
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.1.4	Compare Survival Under Different 'grades'		280#Tutorial 9.1.4	Compare Survival Under Different 'grades'		280
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.3	BC Case - Cox Proportional Hazards Model		283#Tutorial 9.3	BC Case - Cox Proportional Hazards Model		283
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.3.1	BC Case – Data Setup		283#Tutorial 9.3.1	BC Case – Data Setup		283
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.3.2	BC Case – Fit Cox PH Survival Model		283#Tutorial 9.3.2	BC Case – Fit Cox PH Survival Model		283
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.3.3	Log Hazard Ratios		283#Tutorial 9.3.3	Log Hazard Ratios		283
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.3.4	Rank the Features		284#Tutorial 9.3.4	Rank the Features		284
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.4.1	BC Case - Grid Search for a Parsimonious Model		286#Tutorial 9.4.1	BC Case - Grid Search for a Parsimonious Model		286
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.4.2	BC Case - Random Forest Survival Analysis (RFS) Model		290#Tutorial 9.4.2	BC Case - Random Forest Survival Analysis (RFS) Model		290
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.4.2.1	Data Setup		290#Tutorial 9.4.2.1	Data Setup		290
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.4.2.2	Build and Test RFS Model		291#Tutorial 9.4.2.2	Build and Test RFS Model		291
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.4.2.3	Survival Prediction – Plot		291#Tutorial 9.4.2.3	Survival Prediction – Plot		291
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.4.2.4	Feature Ranking		291#Tutorial 9.4.2.4	Feature Ranking		291
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.5.1	BC Case - Compare ROC Curve and Concordance Index		296#Tutorial 9.5.1	BC Case - Compare ROC Curve and Concordance Index		296
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 9.5.2	BC Case - Compare the Performance of Estimators CPH, RSF		299#Tutorial 9.5.2	BC Case - Compare the Performance of Estimators CPH, RSF		299
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.2		Identifying Frequent Itemsets		319#Tutorial 10.2		Identifying Frequent Itemsets		319
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.2.1	Apriori Algorithm		319#Tutorial 10.2.1	Apriori Algorithm		319
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.2.2	Association Rule Mining		321#Tutorial 10.2.2	Association Rule Mining		321
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.3.1	NetworkX Graph Examples		326#Tutorial 10.3.1	NetworkX Graph Examples		326
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.3.2	Community Detection Tutorial – Girvan Newman Algorithm		331#Tutorial 10.3.2	Community Detection Tutorial – Girvan Newman Algorithm		331
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.3.3	Community Detection - West Virginia Student Fraternity		333#Tutorial 10.3.3	Community Detection - West Virginia Student Fraternity		333
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.3.3.1	Building a Graph Showing Student Connectivity		333#Tutorial 10.3.3.1	Building a Graph Showing Student Connectivity		333
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.3.3.2	CC-Pivot Clustering Algorithm		334#Tutorial 10.3.3.2	CC-Pivot Clustering Algorithm		334
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.3.3.3	Clustering Nodes using the CC-Pivot Algorithm		334#Tutorial 10.3.3.3	Clustering Nodes using the CC-Pivot Algorithm		334
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 10.3.3.4	Performance Metrics		335#Tutorial 10.3.3.4	Performance Metrics		335


List of Tutorialsxxvi

Tutorial 11.2 Regression: Stochastic Gradient Descent (SGD) . . . . . . . . 359
Tutorial 11.2.1 Regression Data Setup / Standardisation . . . . . . . . . . . . . . 359
Tutorial 11.2.2 Build Regression Model Using SGD . . . . . . . . . . . . . . . . . 359
Tutorial 11.3 Regression: Regularization. . . . . . . . . . . . . . . . . . . . . . . . . 363
Tutorial 11.3.1 Ridge Regression: (L2 Regularization) . . . . . . . . . . . . . . . 363
Tutorial 11.3.2 Lasso Regression: (L1 Regularization) . . . . . . . . . . . . . . . 363
Tutorial 11.4 Linear Classification using Ridge  

and Lasso Regressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Tutorial 11.4.1 Classification Data Setup | Price -> 3 categories . . . . . . . . 366
Tutorial 11.4.2 Linear Classification using Ridge Regressor . . . . . . . . . . . 366
Tutorial 11.4.3 Linear Classification using Lasso Regressor . . . . . . . . . . . 367
Tutorial 11.4.4 Classification: Stochastic Gradient Descent. . . . . . . . . . . . 368
Tutorial 11.5.1 Regression: k-fold Cross-validation . . . . . . . . . . . . . . . . . . 372
Tutorial 11.5.2 Classification: cross_val_score method . . . . . . . . . . . . . . . 373
Tutorial 11.5.3 Classification: cross_validate method . . . . . . . . . . . . . . . . 374
Tutorial 12.5 A Neural Network for Diamond Price Category  

Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Tutorial 12.5.1 Diamond Price - Data Preprocessing / Setup . . . . . . . . . . . 410
Tutorial 12.5.2 Diamond Price - Setup Neural Network Architecture . . . . 411
Tutorial 12.5.3 Diamond Price - Train the Neural Network . . . . . . . . . . . . 412
Tutorial 12.5.4 Diamond Price - Measure the Model Performance . . . . . . 413
Tutorial 12.6 CIFAR-10 image feature extraction and classification . . . . 418
Tutorial 12.6.1 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Tutorial 12.6.2 Build the CNN Model – Feature Extraction. . . . . . . . . . . . 419
Tutorial 12.6.3 Build the CNN Model – Classification . . . . . . . . . . . . . . . 421
Tutorial 12.6.4 Compile and Run the Model . . . . . . . . . . . . . . . . . . . . . . . 422
Tutorial 12.6.5 Plot Train-Test Convergence History . . . . . . . . . . . . . . . . . 422
Tutorial 12.7 LSTM for Power Demand Prediction . . . . . . . . . . . . . . . . 427
Tutorial 12.7.1 Import Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Tutorial 12.7.2 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Tutorial 12.7.3 Configure and Compile the LSTM network. . . . . . . . . . . . 428
Tutorial 12.7.4 Predict Power Demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Tutorial 12.7.5 Power Demand Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429

http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.2	Regression: Stochastic Gradient Descent (SGD)		359#Tutorial 11.2	Regression: Stochastic Gradient Descent (SGD)		359
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.2.1	Regression Data Setup  Standardisation		359#Tutorial 11.2.1	Regression Data Setup  Standardisation		359
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.2.2	Build Regression Model Using SGD		359#Tutorial 11.2.2	Build Regression Model Using SGD		359
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.3	Regression: Regularization		363#Tutorial 11.3	Regression: Regularization		363
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.3.1	Ridge Regression: (L2 Regularization)		363#Tutorial 11.3.1	Ridge Regression: (L2 Regularization)		363
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.3.2	Lasso Regression: (L1 Regularization)		363#Tutorial 11.3.2	Lasso Regression: (L1 Regularization)		363
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.4	Linear Classification using Ridge and Lasso Regressors		366#Tutorial 11.4	Linear Classification using Ridge and Lasso Regressors		366
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.4.1	Classification Data Setup | Price -> 3 categories		366#Tutorial 11.4.1	Classification Data Setup | Price -> 3 categories		366
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.4.2	Linear Classification using Ridge Regressor		366#Tutorial 11.4.2	Linear Classification using Ridge Regressor		366
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.4.3	Linear Classification using Lasso Regressor		367#Tutorial 11.4.3	Linear Classification using Lasso Regressor		367
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.4.4	Classification: Stochastic Gradient Descent		368#Tutorial 11.4.4	Classification: Stochastic Gradient Descent		368
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.5.1	Regression: k-fold Cross-validation		372#Tutorial 11.5.1	Regression: k-fold Cross-validation		372
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.5.2	Classification: cross_val_score method		373#Tutorial 11.5.2	Classification: cross_val_score method		373
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 11.5.3	Classification: cross_validate method		374#Tutorial 11.5.3	Classification: cross_validate method		374
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.5	A Neural Network for Diamond Price Category Prediction		410#Tutorial 12.5	A Neural Network for Diamond Price Category Prediction		410
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.5.1	Diamond Price - Data Preprocessing  Setup		410#Tutorial 12.5.1	Diamond Price - Data Preprocessing  Setup		410
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.5.2	Diamond Price - Setup Neural Network Architecture		411#Tutorial 12.5.2	Diamond Price - Setup Neural Network Architecture		411
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.5.3	Diamond Price - Train the Neural Network		412#Tutorial 12.5.3	Diamond Price - Train the Neural Network		412
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.5.4	Diamond Price - Measure the Model Performance		413#Tutorial 12.5.4	Diamond Price - Measure the Model Performance		413
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.6	CIFAR-10 image feature extraction and classification		418#Tutorial 12.6	CIFAR-10 image feature extraction and classification		418
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.6.1	Data Setup		418#Tutorial 12.6.1	Data Setup		418
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.6.2	Build the CNN Model – Feature Extraction		419#Tutorial 12.6.2	Build the CNN Model – Feature Extraction		419
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.6.3	Build the CNN Model – Classification		421#Tutorial 12.6.3	Build the CNN Model – Classification		421
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.6.4	Compile and Run the Model		422#Tutorial 12.6.4	Compile and Run the Model		422
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.6.5	Plot Train-Test Convergence History		422#Tutorial 12.6.5	Plot Train-Test Convergence History		422
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.7	LSTM for Power Demand Prediction		427#Tutorial 12.7	LSTM for Power Demand Prediction		427
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.7.1	Import Libraries		427#Tutorial 12.7.1	Import Libraries		427
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.7.2	Data Setup		427#Tutorial 12.7.2	Data Setup		427
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.7.3	Configure and Compile the LSTM network		428#Tutorial 12.7.3	Configure and Compile the LSTM network		428
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.7.4	Predict Power Demand		428#Tutorial 12.7.4	Predict Power Demand		428
http://dx.doi.org/10.1007/978-981-99-0353-5_Tutorial 12.7.5	Power Demand Plot		429#Tutorial 12.7.5	Power Demand Plot		429


1

Learning Objectives

• Understand the history and evolution of data analytics.
• Learn the basic concepts of data analytics.
• Outline data modeling for analytics.
• Acquire familiarity with job opportunities in analytics.
• Get familiar with the contents and the way to use this book.
• Get familiar with the features and access methods of the datasets used in the 

book.
• Understand the software installation process for Python, machine learning, and 

associated libraries.

Overview

The decade starting in 2011 is commonly called the age of the Fourth Industrial 
Revolution, or Industry 4.0. We are witnessing hitherto unknown disruptive inno-
vation driven by the rapid growth of technology—impacting business and day-
to-day social life—attributable to huge strides in interconnectivity and big data 
analytics.

In this chapter, we start with a formal and comprehensive introduction to the 
world of data analytics, through a discussion on the following topics—the history 
and evolution of data analytics, basic theoretical concepts, data modeling, and a 
glimpse of job opportunities. A quick tour of the book chapters follows this.

Chapter 1
Introduction and Overview

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_1

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_1.

https://doi.org/10.1007/978-981-99-0353-5_1#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_1&domain=pdf


2 1 Introduction and Overview

Subsequently, you find a brief description of the datasets used in this book—the 
data features, sample data, and the code snippets to access the datasets. This book 
is intended to provide an applied orientation for using statistical, computational, 
and machine learning techniques through solving numerous problems in data ana-
lytics. Thus, the section on datasets used is expected to come in handy to all read-
ers time and again. Finally, the guidelines for installing Python, TensorFlow, Keras, 
and other related software packages are described. The readers are requested to get 
familiar with current trends through self-learning. A set of exercises for this is pro-
vided. It is recommended that these exercises be undertaken as group projects.

Definitions

Big Data: Big Data is characterized by the amalgamation of factors such as the 
volume of data, velocity (e.g., streaming data), variety (diverse formats like audio, 
video, and text), and veracity (ambiguity, as observed in popular opinions emerg-
ing from social networks). These attributes have posed challenges to traditional 
data processing capabilities.
Business Analytics: Business analytics refers to tools and techniques (metrics and 
models) designed to empower managers with enhanced insights into their busi-
ness operations, facilitating better fact-based decision-making. Coined in 2007, 
Business Analytics is a subset of data analytics.
Business Intelligence (BI): Business Intelligence (BI) gained prominence among 
business executives in the 1990s as a guiding principle for effective business deci-
sion-making. BI encompasses Online Analytical Processing (OLAP) and data 
mining.
Data Analytics: Data Analytics encompasses the entire spectrum of processes, 
including data gathering, transformation, storage, management, extraction, anal-
ysis, model building, and visualization. It is an interdisciplinary field that spans 
operations research, statistics, data science, and various business domains.
Data Mining: Data mining involves identifying patterns and trends in data that are 
not easily discernible using traditional techniques.
Data Models (as used in Analytics): Data Models can be classified into three cate-
gories based on objectives—descriptive, predictive, and prescriptive. Using statis-
tical, computational, and machine learning techniques, these models represent the 
real world.
Data Visualization: In data visualization, users go through a three-step process: 
obtaining an overview of the data, identifying interesting patterns, and drilling 
down into the final details. Visualization technology for data exploration includes 
three components—the data to be visualized, visualization techniques, and interac-
tion techniques.
Data Warehouse: A data warehouse is a historical repository of data collected 
from multiple heterogeneous sources, such as Operational/Transaction Processing 
Systems, ERP, CRM, Supply Chain, and external feeds like market prices. The 
data is organized in a Relational Database Management System (RDBMS) 
schema at a single site to facilitate management decision-making. Data warehouse 



31.1 The World of Data Analytics

processing involves Extract, Transform, Load (ETL) processes, Online Analytical 
Processing (OLAP), and data mining.
Data Stream Processing: Data stream processing involves using specialized algo-
rithms for computations on large datasets arriving rapidly, requiring immediate 
processing without relying on data storage. Examples include satellite images and 
data from sensors.
Deep Learning: Deep Learning focuses on constructing large and complex neural 
networks.
Machine Learning: In machine learning, a subset of the data sample, known as the 
‘training set’, is randomly chosen to train an algorithm. The remaining data is used 
to test the model. This test-train combination is iteratively repeated to develop an 
accurate model.

1.1  The World of Data Analytics

The terms data science and data analytics are used interchangeably, both in aca-
demics and industry. However, data science may be defined as a study of scien-
tific principles to describe data and their interrelationship. A data engineer builds 
data models, and an analyst makes the best use of data from a business perspective 
to achieve business objectives. On a simpler note, data science deals mainly with 
theoretical concepts, whereas data analytics deals with practical applications. This 
book adopts an application-oriented approach, presenting a theoretical foundation 
for a topic followed by practical programming applications.

This section discusses the history and evolution of data analytics, basic con-
cepts and terminology used in data analytics, data modeling for analytics, and job 
opportunities for analytics professionals.

1.1.1  History and Evolution

Let me start with an introduction to the cutting-edge AI technology of gener-
ative AI and one of its applications, ‘ChatGPT’! I asked ChatGPT itself for an 
introduction. The answer is shown below.

‘Generative AI, a remarkable field within artificial intelligence, is revolutioniz-
ing how we interact with and create content using machines. At its core, generative 
AI refers to the ability of computer systems to generate creative and contextu-
ally relevant content, such as text, images, or even music, without explicit human 
input. These systems can understand patterns, context, and style and produce con-
tent matching the desired criteria.

One of the most prominent examples of generative AI is ChatGPT, a creation 
of OpenAI. ChatGPT is a state-of-the-art language model built upon the GPT-3.5 
architecture. It excels at understanding and generating human-like text, making it 



4 1 Introduction and Overview

versatile for various applications, including natural language understanding, con-
tent creation, chatbots, and virtual assistants. By leveraging vast amounts of data 
and sophisticated algorithms, ChatGPT can engage in meaningful and contextually 
relevant conversations, assist with information retrieval, and generate coherent and 
contextually appropriate text, making it a powerful tool in the world of artificial 
intelligence and human–computer interaction’ (OpenAI 2023).

As you know, today's world is witnessing rapid growth in data science and its 
flagship artificial intelligence (AI). However, it may be interesting to note that 
Academic programs in Data Analytics started only as recently as 2010 (Gorman 
and Klimberg 2014). ‘By 2015, 2.35 million jobs were posted under the category 
of Data Science and Analytics in the United States alone’ (Sundararajan 2021), 
and the demand is steadily increasing at 15% CAGR (Markow et al. 2017). Let us 
have a brief overview of the fascinating history of analytics.

With the introduction of microprocessor-based computing systems in the early 
1980s and advancements in hardware, Data Warehouse (DWH) systems sur-
faced in the latter part of the decade. Structured historical data was gathered from 
diverse systems, transformed, and loaded into the DWH for Online Analytical 
Processing (OLAP) and management reporting (Han and Kamber 2014). OLAP 
operations, such as roll-up, drill-down, slicing, dicing, and pivoting, enable the 
examination of data from various perspectives. For instance, a report could show-
case the quarter-to-quarter performance of a product in terms of sales, segmented 
by region, store, and quarterly sales for a retail company. Data warehouses offer 
functionalities for queries, periodic and ad-hoc reporting, and dashboards illustrat-
ing business health.

In the 1990s, Business Intelligence (BI) gained traction among executives as a 
guiding principle for effective business decision-making. BI encompasses OLAP 
and data mining. ‘Data mining is the extraction of interesting (i.e., non-trivial, 
implicit, previously unknown, and potentially useful) patterns or knowledge from 
vast amounts of data. It is also referred to by various names such as Knowledge 
Discovery in Databases (KDD), knowledge extraction, data analysis, pattern anal-
ysis, data archaeology, and data dredging’ (Sundararajan 2021; Han and Kamber 
2014). Figure 1.1 illustrates a schematic diagram of data analytics.

The late 1990s witnessed significant disruptions in business models, shifting 
from brick and mortar to online and from local silos to global, fueled by the emer-
gence of the World Wide Web and internet connectivity that bridged gaps across 
geographies and cultures. By the mid-2000s, digital mobility, social media, and 
cloud computing marked the onset of the big data era (Asamoah et al. 2017; Henry 
and Venkatraman 2015).

It's worth noting that big data lacks a precise definition; rather, it is character-
ized by a combination of factors such as data volume, velocity (e.g., streaming 
data), variety (diverse formats like audio, video, and text), and veracity (ambigu-
ity, as seen in popular opinions from social networks) (Onofrei et al. 2004). These 
characteristics posed challenges to the capabilities of traditional data process-
ing. The convergence of computing technologies—internet, web, social, mobile, 
cloud, and the Internet of Things (IoT)—along with existing information systems, 



5

Mainframe Computers
Sta�s�cs Specializa�on
Opera�ons Management 
Specializa�on

1970

Microprocessors
RDBMS
Data Warehouse
Informa�on Systems 
Specializa�on

1980

Global Internet, WWW
Business Intelligence 
Knowledge Areas

1990

Digital Mobility
Social Media
Cloud
Data Analy�cs
Business Analy�cs 
Knowledge Areas

2000

IoT
Machine Learning
Deep Learning
Data Analy�cs 
Specializa�on(s)

2010

Fig. 1.1  The history and evolution of business analytics

1.1 The World of Data Analytics

open-source technology, and commodity hardware, led to an exponential data 
growth, doubling every 18 months. In 1986, the world had 0.4 zettabytes of opti-
mally compressed information, growing to 1.9 ZB by 2007 (Sundararajan 2021). 
According to a conservative estimate by the International Data Corporation, the 
global data sphere reached 33 zettabytes by the end of 2018 and is projected to 
exceed 175 zettabytes by 2025. Figure 1.1 illustrates the history and evolu-
tion of information systems and the academic program ‘business data analytics’ 
(Sundararajan 2021).

Academic programs in statistics and operations management have been avail-
able since the 1970s. Academic programs in information systems emerged in the 
1980s (Gorman and Klimberg 2014). Courses in data warehousing, data mining, 
and business intelligence were introduced in the 2000s (Schoenherr and Speier-
Pero 2015), and business analytics courses became available in the 2010s. While 
academic programs in analytics have emerged, they are still evolving to meet 
industry demands, offering degrees such as Bachelor's (BA, BS), Master's (MS, 
MBA), and Ph.D.

1.1.2  Data Analytics—Basic Concepts and Terminology

Data Analytics includes all the processes from data gathering, transformation, 
storage, management, extraction, analysis, model building, and visualization (see 
Fig. 1.2). As discussed in the earlier section, data analytics is an interdisciplinary 



6 1 Introduction and Overview

Data Sources

• Datawarehouse
• Data Loading: Extract, 

Transform, Load
• OLAP Server: Slice, Dice, 

Roll-up, Drill-own, Pivot
• Report / Query

• Datastream
• Web searches, Internet 

traffic, Data from 
sensors, Satellite images

Analysis & Visualiza�on

• Data Mining
• Characteriza�on
• Associa�on
• Classifica�on
• Regression
• Clustering

• Data Visualiza�on
• Histograms, Box Plots, Bar 

Charts, Density Plots, Sca�er 
Plots  

• Hierarchies, Graphs, Icons, 
Dense Pixels, Stacks 

• Augmented reality, Virtual 
reality 

Modeling

• Metrics
• Key Process Areas
• Key Performance 

Indicators

• Models by Objec�ves
• Descrip�ve
• Predic�ve
• Prescrip�ve

• Models by Techniques
• Sta�s�cal
• Computa�onal
• Machine Learning

Fig. 1.2  Data analytics schema

field encompassing the broad academic areas of operations research, statistics, 
data science, and business domains.

The core of analytics is Data Mining, which offers tools and techniques for 
modeling and analyzing data. Data Models may be classified into three catego-
ries by way of objectives—descriptive, predictive, and prescriptive. These models 
depict the real world using statistical, computational, and machine-learning tech-
niques (Sundararajan 2021; Leskovec et al. 2020).

Business Analytics is a subset of data analytics, a word coined in 2007. 
Business analytics can be defined as a set of tools and techniques (metrics and 
models) that help managers gain improved insight into their business operations 
and make better, fact-based decisions (Sorger 2013). The Business Analytics 
discipline focuses on business problem-solving ability, rather than the underly-
ing statistical nuances, algorithms, or database technology. The domain in ques-
tion varies; it can be any business, though the following domains offer relatively 
high job opportunities—Marketing (Liu and Levin 2018) Click or tap here to 
enter text., Financial Services, Healthcare (Kamble et al. 2019), Retail, Insurance, 
Supply Chain, Telecom, and HR—ranked based on the order of job postings in the 
job portals of the USA.

The data warehouse is a historical repository of data gathered from multiple 
heterogeneous data sources, such as Operational/Transaction Processing Systems, 
ERP, CRM, Supply Chain, and External feeds like market prices. Data is organ-
ized in a relational database management system (RDBMS) schema, at a single 
site, to facilitate management decision-making. Data warehouse processes include 
ETL processing, online analytical processing (OLAP), and data mining. The 



7

The data to be visualized

dimension)

Trees

Graphs

Texts

Stacks

Dense pixel

Icons

Geometrical 

Filtering

Zoom

Link & Brush 

Fig. 1.3  Data visualization

1.1 The World of Data Analytics

incoming data is subjected to the ETL process: extract, transform, and load. Data 
is cleaned by handling missing values, noise, outliers, and inconsistencies. Data 
in multiple formats and measurements are integrated into a coherent store. Data 
volume is reduced through data reduction techniques. Data is discretized, summa-
rized, and standardized using data transformation techniques. The processed data 
is normalized and loaded into the data warehouse. OLAP supports multidimen-
sional data analysis and decision-making, using tools such as roll-up, drill down, 
slice, dice, pivot, drill across, and drill through, providing an increasing granular-
ity of information, as desired.

Data stream processing needs specialized algorithms for computations on 
large data that arrive fast so that it can be processed immediately without relying 
on data storage—for example, satellite images, sensor data, internet traffic, and 
web searches. Advanced algorithms that use high computing power, memory, data 
storage, and parallelization are necessary to achieve this.

Statisticians were the first to use the term ‘data mining’. Traditionally, data 
mining is defined as identifying patterns and trends in data that are not easily dis-
cernible. The statistical techniques include characterization, association, regres-
sion, classification, and clustering. The chapter ‘Introduction to probability and 
Statistics’ discusses data characterization using descriptive and inferential statis-
tics. The topic ‘association’ gets specific treatment in the chapter ‘computational 
techniques’. The topics of regression, classification, and clustering are discussed in 
separate chapters.

In data visualization, the user usually follows a three-step process: get an 
overview of the data, identify interesting patterns, and drill down final details. 
See Fig. 1.3. Visualization technology for data exploration involves three com-
ponents—the data to be visualized, visualization techniques, and interaction 
techniques (Berthold et al. 2007). Visualizing data can be spatially structured in 
1D/2D/Multi dimensions. Alternatively, the data may have the structure of a tree, 
graph, or text. Visualization techniques may include stacks, dense pixels, icons, 



8 1 Introduction and Overview

and geometrical transformations. Users can interact with the display in multiple 
ways, such as projection, filtering, zoom, distortion, and link and brush.

R and Python provide excellent programming techniques through ever-grow-
ing and powerful software libraries available for free. At the same time, highly 
sought-after specialized tools (e.g., Tableau for data visualization) are available for 
a fee. Common statistical visualization techniques include histograms, box plots, 
bar charts, density plots, scatter plots, and multi-dimensional plots. Nevertheless, 
augmenting the perception of the tangible world can be achieved by applying 
audio-visual techniques or other sensory stimuli facilitated by technology. This 
method is commonly referred to as augmented reality. In contrast, virtual reality 
creates a computer-generated simulated environment, immersing users in a virtual 
space.

As we are aware, expressing the real world using a linguistic description, pic-
ture, or 3D model is customary. In data science, the term ‘data model’ typically 
refers to depicting real-world phenomena using mathematical models. These 
models may be classified into three categories by way of objectives—descriptive, 
predictive, and prescriptive. The descriptive model characterizes a phenomenon. 
Predictive models help to determine the likely outcomes based on given inputs. 
The prescriptive model helps to determine the best course of action under the 
given constraints to optimize an objective.

Data models may be classified based on the techniques employed—statistical, 
computational, or machine learning. Statisticians view a data model as the con-
struction of a statistical model—the parameters of an underlying distribution to 
which the visible data belongs. We need computational methods to model data 
when the data does not conform to Gaussian or other well-defined statistical dis-
tributions. Examples include Google page rank, market basket analysis, product 
recommendations, and social network analysis. For example, the similarity of user 
preferences upon a few selected features is analyzed for product recommendation 
systems used by Amazon and Netflix.

Machine learning is used in recommendation systems, image processing, 
speech recognition, fingerprint identification, and medical diagnosis. Machine 
learning methods are broadly classified into supervised, unsupervised, and rein-
forcement learning. For example, let us consider supervised machine learning. 
This method randomly selects a subset of the data sample named ‘training dataset’ 
to train an algorithm such as Bayes nets, support vector machines, decision trees, 
and hidden Markov models. The rest of the data is used for testing the model. The 
test-train combination is repeated iteratively to develop an accurate model. The 
other machine learning methods also depend on the principle of learning underly-
ing patterns from data and the method of train/test. However, the details differ—
please see Chap. 11 for a better understanding.

Deep Learning (DL) techniques represent a recent advancement in machine 
learning within the past decade, revitalizing Artificial Intelligence. This resur-
gence is attributed to the abundant availability of high computing power, includ-
ing GPUs, CPUs, memory, and parallel processing algorithms. DL focuses on 
constructing extensive and intricate neural networks, employing architectures like 

http://dx.doi.org/10.1007/978-981-99-0353-5_11


91.2 How to Use This Book

convolutional neural networks, recurrent neural networks, stacked autoencoders, 
deep Boltzmann machines, deep belief networks, and more. Despite the effective-
ness of deep learning methods with substantial datasets, the resulting models can 
occasionally pose challenges in terms of interpretation.

1.1.3  Job Opportunities

The job profiles in the analytics area may be broadly categorized as data sys-
tems developers, data scientists, data analysts, functional analysts, and data-
driven decision-makers, each requiring varied skill sets (Sundararajan 2021; 
Markow et al. 2017). Functional analysts and data-driven decision-makers require 
domain-specific knowledge and an understanding of analytics skills, which are 
important for organizations consuming and interpreting data.

The top disruptive skills in growing demand are big data, Hadoop, R, data visu-
alization, and machine learning. The Spark framework is several times faster than 
the Hadoop framework in storing and manipulating big data. Built-in machine 
learning frameworks are associated with big data platforms—e.g., Spark ML for 
Hadoop and Spark. R boasts an excellent set of in-built statistical tools, while the 
world of Python is rapidly catching up. Python and associated frameworks such as 
Scikit Learn Tensorflow, Keras, and PyTorch provide an excellent environment for 
developing models for machine learning and artificial neural networks.

Most of the software stacks mentioned above belong to FOSS (free and open-
source software) and are available for free. Several commercial systems (database 
and software tools) are available for a fee or as freemium. They are widely used 
in the industry, e.g., Tableau data visualization tool, Google Analytics for web 
data analytics, and SAS for statistical and data visualization, among others. Some 
of the traditional skill sets in demand are ETL (tools for data warehousing), data 
management, SQL, and business data analysis (financial analytics, marketing ana-
lytics, health care, telecom).

1.2  How to Use This Book

The book provides an applied orientation for using statistical and computa-
tional techniques to solve data analytics problems. This book will be helpful for 
students of data analytics, computer science, computer application, statistics, 
business analytics, biological sciences, and the healthcare domain. The hands-on 
approach envisages step-by-step learning with over 100 tutorials and exercises. In 
addition, each chapter provides a set of descriptive-type questions. Case studies 
are given at the end of some of the chapters.

The following is a note to those who need to become more familiar with Python 
programming. You may need to install an IDE, a toolset that helps you develop 



10 1 Introduction and Overview

and test programs. You may use popular IDEs such as Spyder, PyCharm, Jupyter 
Notebook, etc. An IDE can be installed on your local system individually or under 
the package ‘anaconda’. Google Colab provides internet-based Jupyter Notebook 
emulation. If you prefer to use Google Colab, you need not install any software; 
all you need is internet connectivity.

If you are new to programming, Spyder (local installation) or Google Colab 
(internet-based access) is recommended.

There are 12 chapters. If the reader has preliminary programming knowledge, 
Chap. 2, ‘Python for Data Analytics’ can be skipped. If the reader is familiar with 
statistics concepts, Chap. 3, ‘Introduction to Probability and Statistics’, and Chap. 4, 
‘Hypothesis Testing’ can be skipped. Chapters 5–8 cover multivariate analysis tech-
niques such as regression, classification, factor analysis, and cluster analysis. Chapter 
9 discusses a topic of special interest in statistics—survival analysis. Chapter 10 dis-
cusses Computational Techniques (frequent itemset/market basket analysis, social 
network analysis, and recommendation systems). Chapter 11 introduces Machine 
Learning, and Chap. 12, Artificial Intelligence and Deep Neural Networks.

Python is a versatile programming language used for multiple purposes—
common programming, solving statistical problems, and building machine learn-
ing/deep learning models. Chapter 2 provides a brief overview of programming 
in Python, which includes (a) basic programming—variables and operators, data 
structures, control flow, and functions, (b) libraries useful for data analytics—pan-
das, NumPy, matplotlib/Seaborn for data visualization, (c) statistical packages, 
and (d) scikit learn library for machine learning. If you work out the problems in 
this section, you will get a jump start on the Python programming techniques  nec-
essary to solve the problems in the rest of the book.

Chapter 3 provides a foundation in probability by introducing random num-
bers and probability distribution functions such as binomial, Poisson, normal 
(Gaussian), etc. An examination of descriptive statistics follows this. Skip this 
chapter if you have basic concepts of probability. Chapter 4 introduces hypothesis 
testing, tests for means, tests for variances, and tests for categories. Skip this chap-
ter if you have basic concepts of statistics.

Chapter 5 covers the concepts of correlation, regression, validity and reliabil-
ity, and polynomial regression. Chapter 6 introduces classification and proceeds 
to cover various classification techniques such as binary logistic regression, linear 
discriminant analysis, support vector machines, decision tree classification, and 
comparison of classifier performance. Chapter 7 describes techniques for dimen-
sion reduction, exploratory factor analysis, confirmatory factor analysis, valid-
ity, reliability of factor analysis, and use of factor scores for regression. Chapter 
8 describes various cluster analysis techniques and explores hierarchical and 
k-means in-depth.

Chapter 9 covers survival analysis. Survival analysis is the study of the 
expected duration for an event to occur based on a study of censored data. The 
survival probability is the probability that an individual survives an event from the 
study's starting point. This is a specialized topic, particularly useful in the health-
care domain; therefore, the reader may skip this topic if he/she chooses to do so.

http://dx.doi.org/10.1007/978-981-99-0353-5_2
http://dx.doi.org/10.1007/978-981-99-0353-5_3
http://dx.doi.org/10.1007/978-981-99-0353-5_4
http://dx.doi.org/10.1007/978-981-99-0353-5_5
http://dx.doi.org/10.1007/978-981-99-0353-5_8
http://dx.doi.org/10.1007/978-981-99-0353-5_9
http://dx.doi.org/10.1007/978-981-99-0353-5_10
http://dx.doi.org/10.1007/978-981-99-0353-5_11
http://dx.doi.org/10.1007/978-981-99-0353-5_12
http://dx.doi.org/10.1007/978-981-99-0353-5_2
http://dx.doi.org/10.1007/978-981-99-0353-5_3
http://dx.doi.org/10.1007/978-981-99-0353-5_4
http://dx.doi.org/10.1007/978-981-99-0353-5_5
http://dx.doi.org/10.1007/978-981-99-0353-5_6
http://dx.doi.org/10.1007/978-981-99-0353-5_7
http://dx.doi.org/10.1007/978-981-99-0353-5_8
http://dx.doi.org/10.1007/978-981-99-0353-5_9


111.3 A Brief Description of the Datasets Used

What about data mining algorithms that do not use statistical techniques, or 
where the use of statistical techniques is not the primary focus? Such techniques 
for data mining are introduced in Chap. 10 under the umbrella of computational 
techniques. Three of the commonly used computational techniques are covered 
here—(a) frequent item sets and market basket analysis, (b) social network analy-
sis, and (c) recommendation systems.

Chapter 11 introduces machine learning. Several machine learning tutorials 
in regression and classification analysis are demonstrated. Chapter 12 introduces 
artificial intelligence and deep neural networks and deep learning. The chapter 
discusses feedforward networks, RNN, LSTM, and CNN and demonstrates them 
using the Keras framework.

Wish you an enjoyable read!

1.3  A Brief Description of the Datasets Used

The datasets used in this book are briefly described below for quick and easy 
reference. Please refer to Sundararajan (2023) for some of the datasets and their 
descriptions.

Tutorial 1.3.1 Diamonds

How to Access the Dataset?
Refer: R documentation

sb.get_dataset_names()
pdf  = sb.load_dataset('diamonds')
pdf.info()

Description

The diamonds dataset contains the prices and other attributes of almost 
54,000 diamonds. The variables are as follows: -
price: price in US dollars (326 - 18823)
carat: weight of the diamond     (0.2 - 5.01)
cut: quality of the cut (Fair, Good, Very Good, Premium, Ideal)
color: diamond color, from D (best) to J (worst)
clarity: indicates how clear the diamond is (I1), SI2,..., IF)
x: length in mm (0 -10.74)
y: width in mm (0 - 58.9)
z: depth in mm (0 -31.8)
depth: total depth % = Z / mean(X,Y)       (43 - 79)
table: width of to the p of the diamond relative to widest point (43-95)

http://dx.doi.org/10.1007/978-981-99-0353-5_10
http://dx.doi.org/10.1007/978-981-99-0353-5_11
http://dx.doi.org/10.1007/978-981-99-0353-5_12


12 1 Introduction and Overview

Sample Data

carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43

1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31

2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31

... ... ... ... ... ... ... ... ... ...

53937 0.70 Very Good D SI1 62.8 60.0 2757 5.66 5.68 3.56

53938 0.86 Premium H SI2 61.0 58.0 2757 6.15 6.12 3.74

53939 0.75 Ideal D SI2 62.2 55.0 2757 5.83 5.87 3.64

[53940 rows x 10 columns]

Tutorial 1.3.2 Planets

How to Access the Dataset?
Refer: seaborn

import seaborn as sb
pdf = sb.load_dataset('planets')
pdf.info()

Description

RangeIndex: 1035 entries, 0 to 1034
Data columns (total 6 columns):

Sample Data

# Column Non-NullCount Dtype  
--- ------ -------------- -----
0 method 1035 non-null object Category with 10 labels
1 number 1035 non-null int64
2 orbital_period 992 non-null float64 * missing values
3 mass 513 non-null float64 * missing values
4 distance 808 non-null float64 * missing values
5 year 1035 non-null int64

method number orbital_period mass distance year
0 Radial Velocity 1 269.300000 7.10 77.40 2006
1 Radial Velocity 1 874.774000 2.21 56.95 2008
2 Radial Velocity 1 763.000000 2.60 19.84 2011
               ...     ...               ...    ...        ...   ...
1032 Transit 1 3.191524 NaN 174.00 2007
1033 Transit 1 4.125083 NaN 293.00 2008
1034 Transit 1 4.187757 NaN 260.00 2008
[1035 rows x 6 columns]



131.3 A Brief Description of the Datasets Used

Tutorial 1.3.3 Penguins

How to Access the Dataset?
Refer: https://github.com/allisonhorst/penguins

import seaborn as sb
pdf = sb.load_dataset('penguins')
pdf.info()

Description

The dataset comprises information for 344 penguins, encompassing three dis-
tinct species. These penguins were gathered from three islands within the 
Palmer Archipelago, Antarctica.

Column Non-Null Count Dtype
0 species 344 non-null ['Adelie', 'Chinstrap', 'Gentoo'] 
1 island 344 non-null ['Biscoe','Dream','Torgersen'] 
2 bill_length_mm 342 non-null float64 * 2 missing values
3 bill_depth_mm 342 non-null float64 * 2 missing values
4 flipper_length_mm 342 non-null float64 * 2 missing values
5 body_mass_g 342 non-null float64 * 2 missing values
6 sex 333 non-null ['Female','Male'] * 9 miss.values

Sample Data

species island bill_len… ... flipper_len… body_mass_g sex
0 Adelie Torgersen 39.1 ... 181.0 3750.0 Male
1 Adelie Torgersen 39.5 ... 186.0 3800.0 Female
2 Adelie Torgersen 40.3 ... 195.0 3250.0 Female
.. ... ... ... ... ... ... ...
341 Gentoo Biscoe 50.4 ... 222.0 5750.0 Male
342 Gentoo Biscoe 45.2 ... 212.0 5200.0 Female
343 Gentoo Biscoe 49.9 ... 213.0 5400.0 Male
[344 rows x 7 columns]

Tutorial 1.3.4 Chickweight

How to Access the Dataset?
Refer: R Documentation

import statsmodels.api as sm  
pdf =sm.datasets.get_rdataset("ChickWeight").data
pdf.columns
pdf.info()



14 1 Introduction and Overview

Description

Chick body weights were recorded at birth and subsequently every other day 
up to day 20, with an additional measurement on day 21. The chicks were 
grouped into four categories based on different protein diets. The dataset 
includes the following variables:

• Weight: A numeric vector representing the body weight of the chickens 
in grams.

• Time: A numeric vector indicating the number of days since birth when 
each measurement was taken.

• Chick: An ordered factor with levels of 18 … 48, serving as a unique 
identifier for each chick. The ordering of levels organizes chicks on 
the same diet and arranges them based on their final weight within the 
diet, from lightest to heaviest.

• Diet: A factor with levels of 1 … 4, indicating the experimental diet 
each chick received.

RangeIndex: 578 entries, 0 to 577
Data columns (total 4 columns):

Sample Data

#      Column    Non-Null Count  Dtype
---   ------    --------------   -----
0 weight 578 non-null int64
1 Time 578 non-null int64 # 0 ... 21
2 Chick 578 non-null int64
3 Diet 578 non-null int64 # values 0,1,2,3

weight Time Chick Diet
0 42 0 1 1
1 51 2 1 1
2 59 4 1 1
.. ... ... ... ...
575 234 18 50 4
576 264 20 50 4
577 264 21 50 4
[578 rows x 4 columns]



151.3 A Brief Description of the Datasets Used

Tutorial 1.3.5 Iris

How to Access the Dataset?
Refer: R Documentation
(a) Common Method

import seaborn as sb
pdf = sb.load_dataset('iris')
pdf.columns
pdf.info()

(b) For Machine Learning
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data

y = iris.target

Description

The dataset consists of measurements on 150 iris flowers belonging to three 
categories – setosa, versicolor, and virginica. Four features are measured. 
Length and width of sepals and petals.

Column Non-Null Count Dtype
--- ------ -------------- -----
0 sepal_length 150 non-null float64
1 sepal_width 150 non-null float64
2 petal_length 150 non-null float64
3 petal_width 150 non-null float64
4 species 150 non-null object - setosa, versicolor, virginica

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
.. ... ... ... ... ...
147 6.5 3.0 5.2 2.0 virginica
148 6.2 3.4 5.4 2.3 virginica
149 5.9 3.0 5.1 1.8 virginica

[150 rows x 5 columns]

Sample Data



16 1 Introduction and Overview

Tutorial 1.3.6 Tips

How to Access the Dataset?
Refer: seaborn

import seaborn as sb
pdf=sb.load_dataset('tips')
pdf.info( )

Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 total_bill 244 non-null float64 
 1 tip 244 non-null float64
 2 sex 244 non-null category ['Male', 'Female']
 3 smoker 244 non-null category ['Yes', 'No']
 4 day 244 non-null category ['Thur', 'Fri', 'Sat', 'Sun']
 5 time 244 non-null category ['Lunch', 'Dinner']
 6 size 244 non-null int64

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
.. ... ... ... ... ... ... ...
241 22.67 2.00 Male Yes Sat Dinner 2
242 17.82 1.75 Male No Sat Dinner 2
243 18.78 3.00 Female No Thur Dinner 2

[244 rows x 7 columns]

Description

Many factors may influence food servers' tips in restaurants. The following 
dataset shows customers served during two and a half months.
RangeIndex: 244 entries, 0 to 243

Sample Data



171.3 A Brief Description of the Datasets Used

Tutorial 1.3.7 IT Projects

How to Access the Dataset?
Refer: {(Sundararajan, 2023)}

import pandas as pd
# Download the file from GitHub
pdf=pd.read_csv('itprojects.csv') 
pdf.info()

Description

A study was conducted to explore the variables that influence software pro-
ject performance, a float. Eleven variables were hypothesized to influence 
project performance – they are measured on a scale of 0..6. 100 responses 
were collected from IT consultants working on various projects. Project 
Type is a category Variable with three labels - 0,1,2
RangeIndex: 100 entries, 0 to 99

Data columns (total 14 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Case_No 100 non-null int64 Serial Number
 1 change_mgmt 100 non-null int64 feature
 2 project_plan 100 non-null int64 feature  
 3 tech_mentoring 100 non-null int64 feature  
 4 pm_tools 100 non-null int64 feature
 5 dev_process 100 non-null int64 feature
 6 system_arch 100 non-null int64 feature
 7 design_think 100 non-null int64 feature
 8 team_skills 100 non-null int64 feature
 9 core_team 100 non-null int64 feature
 10 prior_exp 100 non-null int64 feature
 11 rewards_recog 100 non-null int64 feature
 12 project_type 100 non-null int64 [0, 1, 2]
 13 project_perf 100 non-null float64 target variable

dtypes: float64(1), int64(13)



18 1 Introduction and Overview

Sample Data

Case_No change_mgmt ... project_type project_perf
0 1 5 ... 1 0.374933
1 2 6 ... 1 2.131779
2 3 5 ... 1 1.679185
.. ... ... ... ... ...
97 98 5 ... 2 -1.192247
98 99 6 ... 1 2.401460
99 100 5 ... 1 0.383024

[100 rows x 14 columns]

Tutorial 1.3.8 Breast Cancer - Gene Prognostic Signature

How to Access the Dataset?
Refer: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7390

from sksurv.datasets import load_breast_cancer
X, Y = load_breast_cancer()

Description

A Survival analysis study was conducted on 198 breast cancer patients to 
predict distant metastases (dm). Distant metastasis (dm) refers to cancer 
that has spread from the original (primary) tumor to distant organs/lymph 
nodes. The study included 76-gene prognostic signatures in lymph node-nega-
tive (N-) breast cancer patients. 

Features (X0 … X79): 80 features
•   76 gene characteristics
•   age
•   er (estrogen-receptor) categories {positive, negative} 

Note:- About 80% of all breast cancers are er-positive
•   grade (the abnormality of cancer cells) categories:- {intermediate, 

poorly differentiated, well differentiated}
•   size

Survival Data (Y): structured array with 2 fields
•   e.tdm: boolean - True indicates that metastasis has occurred; False 

indicates that the event time is right-censored
•   t.tdm: time to distant metastasis in days



191.3 A Brief Description of the Datasets Used

Sample Data

Features (X)
Data columns (total 80 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 X200726_at 198 non-null float64
 1 X200965_s_at 198 non-null float64
 2 X201068_s_at 198 non-null float64
 3 X201091_s_at 198 non-null float64
 4 X201288_at 198 non-null float64

... ... ... ... ...

 74 X221916_at 198 non-null float64 
 75 X221928_at 198 non-null float64
 76 age 198 non-null float64 
 77 er 198 non-null category ['negative', 'positive']
 78 grade 198 non-null category
['poorly differentiated', 'intermediate', 'well differentiated', 'unkown']
 79 size 198 non-null float64

X
X200726_at X200965_s_at ... grade size

0 10.926361 8.962608 ... poorly differentiated 3.0
1 12.242090 9.531718 ... poorly differentiated 3.0
2 11.661716 10.238680 ... poorly differentiated 2.5
3 12.174021 9.819279 ... poorly differentiated 1.8
4 11.484011 11.489233 ... intermediate 3.0
.. ... ... ... ... ...
193 12.018292 8.323876 ... poorly differentiated 2.2
194 11.711415 10.428482 ... poorly differentiated 3.2
195 11.939616 9.615587 ... well differentiated 2.5
196 11.848449 10.528911 ... intermediate 1.2
197 11.425778 9.901486 ... poorly differentiated 2.5

[198 rows x 80 columns]

Y
array([( True,  723.), (False, 6591.), ( True,  524.), (False, 6255.),
...               ...           ...                      ...

(False, 2722.), (False, 1781.)]



20 1 Introduction and Overview

Tutorial 1.3.9 German Breast Cancer Study Group 2

How to Access the Dataset?
Refer: https://ascopubs.org/doi/abs/10.1200/jco.1994.12.10.2086

from sksurv.datasets import load_gbsg2
x, y = load_gbsg2()
x.info()

Description

We are exploring a dataset with having 686 samples and 8 features. The end-
point is recurrence-free survival, which occurred for 299 patients (43.6%). 
This dataset is the part of a study by the German Breast Cancer Study Group 
(GBSG) in 1984. This randomized clinical trial compared the effectiveness 
of different drug dosages on recurrence-free and overall survival.

Sample Data

X (features)
 0 age 686 non-null float64 
 1 estrec 686 non-null float64 
 2 horTh 686 non-null category -> ['no', 'yes']
 3 menostat 686 non-null category -> ['Pre', 'Post']
 4 pnodes 686 non-null float64 
 5 progrec 686 non-null float64 
 6 tgrade 686 non-null category -> ['I', 'II', 'III']
 7 tsize 686 non-null  float64 
Y (outcome)

• 'cens', Boolean 
• 'time', float (survival in days)

X
age estrec horTh menostat pnodes progrec tgrade tsize

0 70.0 66.0 no Post 3.0 48.0 II 21.0
1 56.0 77.0 yes Post 7.0 61.0 II 12.0
2 58.0 271.0 yes Post 9.0 52.0 II 35.0
.. ... ... ... ... ... ... ... ...
683 51.0 0.0 no Pre 5.0 43.0 III 25.0
684 52.0 34.0 no Post 3.0 15.0 II 23.0
685 55.0 15.0 no Post 9.0 116.0 II 23.0

[686 rows x 8 columns]

Y 
array([( True, 1814.), ( True, 2018.), ( True,  712.), ( True, 1807.),

...               ...           ...                       ...
       ( True,  727.), ( True, 1701.)]



211.3 A Brief Description of the Datasets Used

Tutorial 1.3.10 West Virginia Student Fraternity

How to Access the Dataset?
Refer: {(Sundararajan, 2023)}

import pandas as pd
# Download the file from GitHub
d=pd.read_csv('WV-fraternity.csv')
d.shape         # (116, 58)

Description

This dataset consists of information about the interaction of students in a 
student fraternity in West Virginia - the number of times they interacted 
over a week. This dataset is used for social network analysis in Chapter 10.

Tutorial 1.3.11 The CIFAR-10 Dataset and CIFAR-100 Dataset

How to Access the Dataset?
Refer: https://www.cs.toronto.edu/~kriz/cifar.html

from tensorflow.keras import datasets
(X_train, y_train), (X_test, y_test) = datasets.cifar10.load_data()

Description

The CIFAR-10 dataset consists of 60,000 32x32 color images in 10 classes, 
with 6000 images per class. There are 50,000 training images and 10,000 
test images. The image classes are: - airplane, automobile, bird, cat, 
deer, dog, frog, horse, ship, and truck.
The CIFAR-100 dataset has 100 classes containing 600 images each. The 100 
classes are grouped into 20 superclasses. 

Tutorial 1.3.12 MNIST Handwritten Character Recognition

How to Access the Dataset?
Refer: Refer:- http://yann.lecun.com/exdb/mnist/
This is described in Chapter 12, Artificial Neural Network

Description

The MNIST database, consisting of handwritten digits, includes 60,000 
training and 10,000 test samples. These samples feature images of digits 
in black and white (0,1). The digits have been standardized and centered 
within a fixed-size image of 28x28 pixels. Construct a convolutional neural 
network to classify these images, and elucidate the network's structure and 
parameters.

Tutorial 1.3.13 PowerConsumption

How to Access the Dataset?
Refer – {(Sundararajan, 2023)}  

import pandas as pd
# Download the file from GitHub
d=pd.read_csv('PowerConsumption_2013_19.csv') 
d.shape         # (2161, 9)



22 1 Introduction and Overview

Description

The dataset consists of data gathered from the electricity board for a 
state in India, reported from 2013 to 2019. The features include daily 
power demand, shortage, consumption, load, OD/UD, and date. These are typi-
cal time-series / sequences and can be used for RNN/ LSTM exercises.

Tutorial 1.3.14 Bank Marketing 

How to Access the Dataset?
Refer – https://archive.ics.uci.edu/ml/datasets/bank+marketing

import pandas as pd
# Download the file from the url referred above
d = pd.read_csv ('BankMarketing.csv',delimiter=';')
d.shape #(45211, 17)

Description

The dataset consists of data gathered from a bank marketing survey. It has 
21 variables and 45211 rows. Feature variables considered in the exercises 
are 'age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'. 
The target (independent variable) is 'Has the client in the training data-
set, subscribed to a term deposit?' with binary answers ('yes', 'no').

Y (outcome)
 16  y             45211     non-null    object

X (features)

 0 age 45211 non-null int64 
 1 job 45211 non-null object
 2 marital 45211 non-null object
 3 education 45211 non-null object
 4 default 45211 non-null object
 5 balance 45211 non-null int64 
 6 housing 45211 non-null object
 7 loan 45211 non-null object
 8 contact 45211 non-null object
 9 day 45211 non-null int64
10 month 45211 non-null object
11 duration 45211 non-null int64
12 campaign 45211 non-null int64
13 pdays 45211 non-null int64
14 previous 45211 non-null int64
15 poutcome 45211 non-null object



231.4 Python, Packages, TensorFlow, and Keras

1.4  Python, Packages, TensorFlow, and Keras

Software libraries get revised frequently. Therefore, the installation instructions 
also change. Refer to the home page of the respective software projects for current 
usage. Alternatively, one may refer to installation instructions.

Conda is a package manager and environment management system that han-
dles packages from multiple programming languages. Conda is typically associ-
ated with Anaconda, a Python and data science package distribution. We can use 
the conda command to create and manage Python environments and install pack-
ages. It is beneficial when managing dependencies for scientific computing and 
data science projects. It also helps in resolving and managing complex package 
dependencies.

Pip is the default package manager for Python and is explicitly used for Python 
packages. It is a package manager for installing, upgrading, and managing Python 
packages from the Python Package Index (PyPI). We can use the pip command 
to install Python packages on our system. In environments like Google Colab, 
Jupyter Notebooks, Spyder, and other IDEs, we can use the ‘!pip’ command in 
Python program code cells to install Python packages. Note that the ‘!’ charac-
ter runs shell commands within a Python program in these IDEs. The ‘!pip’ com-
mand(s) also helps in Checking and Resolving Path Dependencies.



24 1 Introduction and Overview

Data Analytics in Action 

A gazal evening with ChatGPT
(A narration of my interaction with 
ChatGPT (OpenAI 2023), a generative/
conversational large language AI model 
from OpenAI)
[me]
Some for the Glories of This World;
and some Sigh for the Prophet's Paradise 
to come;
[chat.openai]
This line is from the famous poem ‘The 
Rubaiyat’ by Omar Khayyam, a Persian 
poet, mathematician, and philosopher. The 
poem reflects on the themes of life, death, 
and the human condition … Overall, the 
poem encourages readers to live in the 
present and enjoy the beauty of life, rather 
than getting caught up in worldly ambi-
tions or religious dogma
[me…
]
Ah, neither take the Cash or the Credit,
Nor heed to the rumble of a distant Drum
[chat.openai]
Your response is a variation of the original 
stanza from Omar Khayyam's poem ‘The 
Rubaiyat’. While the original stanza 
suggests taking the cash and enjoying the 
present moment, your variation suggests 
avoiding both cash and credit and not 
worrying about the distant future. This 
variation could be interpreted as a call to 
live in the moment and not be overly con-
cerned with material possessions or future 
rewards. It suggests that true happiness 
can be found by living a simple, contented 
life and not being distracted by external 
pressures or desires…

[me…
In continuation… My own lines]
Fill your vital breath with the fragrance 
of April blossom, and enjoy the gentle 
melody of the river side breeze
[chat.openai]
Your statement is a poetic and evocative 
call to savor the beauty of nature and the 
present moment… The imagery in your 
statement is vivid and sensory, inviting 
the reader to imagine the sights, sounds, 
and smells of a tranquil spring day… It is 
a call to live in the present moment and to 
find joy in the small things that make life 
meaningful
[me]
chat.openai, continue and write a few 
more stanzas
[chat.openai]
Let your worries drift away on the river's 
gentle flow,
And feel your troubles dissipate like the 
soft, drifting snow,
As the world around you comes alive with 
vibrant glow
Breathe in the fresh, crisp air and feel 
your spirit soar,
As you revel in the beauty of nature's 
boundless store,
And let your heart be filled with joy 
forevermore
For life is but a fleeting moment in time,
A precious gift that's yours and mine,
To cherish and savor, like a sweet, fra-
grant wine
So let us drink deeply from the cup of life,
And revel in its beauty and all its strife,
For in the end, it's the journey that counts, 
not the final strife

Summary

The history of data analytics reveals the evolution of hardware in the 
1980s, the rise of data warehouse (DWH) systems, and business intelligence 
(BI) in the 1990s. The late 1990s witnessed a shift in business models from 



25Questions

brick-and-mortar to online platforms, facilitated by the World Wide Web and inter-
net connectivity, breaking geographical and cultural barriers. The twenty-first cen-
tury sees disruptive innovation fueled by technology growth, impacting business 
and daily life, with big data analytics facing challenges in volume, velocity, vari-
ety, and veracity. Academic programs in data warehousing, data mining, and busi-
ness intelligence emerged in the 2000s, with analytics programs still evolving.

Data analytics involves processes from gathering to visualization, incorporat-
ing operations research, statistics, data science, and business domains. The core 
is data mining, contributing to descriptive, predictive, and prescriptive models. 
Business analytics, coined in 2007, involves tools for better decision-making. The 
data warehouse stores historical data, utilizing ETL processing, OLAP, and data 
mining. Data stream processing requires specialized algorithms.

Data visualization follows a three-step process: overview, pattern identification, 
and detailed exploration. Statisticians construct statistical models, while machine 
learning trains algorithms using sample data. Deep Learning (DL) focuses on large 
neural networks. Job profiles include data systems developers, scientists, analysts, 
functional analysts, and decision-makers.

The book emphasizes applied learning with over 100 tutorials and exercises, 
addressing Python and frameworks like Scikit Learn, TensorFlow, Keras, and 
PyTorch. Most software used in data analytics is free and open source. Installation 
steps for the software stack are provided in the book.

Questions

Comprehension:

 1. What is the distinction between data science and data analytics, and how do 
they differ in their focus and applications?

 2. How has the field of data analytics evolved over the years, and what signifi-
cant developments have contributed to its growth?

 3. What are the primary categories of data models, and how do they differ 
regarding their objectives and techniques?

 4. What are the essential skills and technologies in demand in data analytics, and 
how do they relate to job opportunities?

 5. Can you explain the role of data warehousing and data mining in data analyt-
ics and how they contribute to decision-making?

 6. How does data visualization enhance the understanding of data, and what are 
the essential components of data visualization technology?

 7. What are the main challenges associated with big data, and what characteris-
tics define it in terms of volume, velocity, variety, and veracity?

 8. What are the different types of data analytics, and how do they contribute to 
solving practical problems in various domains?

 9. Define business analytics.
 10. Describe the basic principle of machine learning.



26 1 Introduction and Overview

 11. Provide three examples of computational techniques in data mining.
 12. Compare and Contrast Deep learning with Machine learning.

Application:

13. Imagine you are working with a dataset of customer behavior for an e-com-
merce website. How would you use descriptive analytics to gain insights into 
customer demographics and browsing patterns?

14. You are tasked with predicting customer churn for a subscription-based ser-
vice. What type of analytics (descriptive, predictive, or prescriptive) would 
you use, and what data and techniques would be essential for this analysis?

15. A marketing team is looking to assess the effectiveness of an advertising cam-
paign. What metrics and analytical methods would you use to measure the 
campaign's success, and how would you present the results to stakeholders?

Exercises

Note: The objective of the following exercises is to understand the current trends 
in Data Analytics. This exercise may be given as a group assignment. The groups 
shall share their learnings through scheduled dissemination.

Suggested topics:

1. AI in Business, AI and Society, Ethics & AI, The Future of AI (suggested 
source: articles from indexed and peer-reviewed academic journals)

2. Current Job Trends in Data Analytics/AI/ML (suggested source:—job portals, 
peer-reviewed articles from academic journals)

3. Technology Trends in AI
4. Disruptive Technologies—social media, mobility, data analytics, cloud, and 

IoT (suggested source: articles by IT analysts, Management Consultancies, as 
well as peer-reviewed academic journals)

5. Databases: RDBMS and Data warehousing, No-SQL Databases, Big Data 
Platform—Hadoop Ecosystem and Spark Ecosystem

6. Business Analytics—Financial, Marketing, HR, Supply Chain, Healthcare.

References

Asamoah DA, Sharda R, Hassan Zadeh A, Kalgotra P (2017) Preparing a data scientist: a ped-
agogic experience in designing a big data analytics course. Decis Sci J Innov Educ 15(2). 
https://doi.org/10.1111/dsji.12125

Berthold N, Fricke H, Müller A (2007) Kleine Bundesländer—Achillesferse des Föderalismus? 
Zeitschrift Für Wirtschaftspolitik 56(2). https://doi.org/10.1515/zfwp-2007-0203

Gorman MF, Klimberg RK (2014) Benchmarking academic programs in business analytics. 
Interfaces 44(3). https://doi.org/10.1287/inte.2014.0739

http://dx.doi.org/10.1111/dsji.12125
http://dx.doi.org/10.1515/zfwp-2007-0203
http://dx.doi.org/10.1287/inte.2014.0739


27References

Henry R, Venkatraman S (2015) Big data analytics is the next big learning opportunity. J Manag 
Inf Decis Sci 18(2)

Han J, Micheline Kamber, Pei J (2014). Data mining: concepts and techniques (The Morgan 
Kaufmann Series in Data Management Systems). In Proceedings—2013 international confer-
ence on machine intelligence research and advancement, ICMIRA 2013, 3rd ed

Kamble SS, Gunasekaran A, Goswami M, Manda J (2019) A systematic perspective on the appli-
cations of big data analytics in healthcare management. Int J Healthc Manag 12(3). https://
doi.org/10.1080/20479700.2018.1531606

Leskovec J, Rajaraman A, Ullman JD (2020) Mining of massive datasets. In: Biometrics (Issue 
4). Cambridge University Press, Cambridge. https://doi.org/10.1111/biom.12982

Liu X, Burns AC (2018) Designing a marketing analytics course for the digital age. Mark Educ 
Rev 28(1):28–40. https://doi.org/10.1080/10528008.2017.1421049

Liu Y, Levin MA (2018) A progressive approach to teaching analytics in the marketing curricu-
lum. Mark Educ Rev 28(1). https://doi.org/10.1080/10528008.2017.1421048

Markow W, Braganza S, Taska B, Miller S, Hughes D (2017) The quant crunch: how the demand 
for data science skills is disrupting the job market. In: Burning Glass Technologies

Onofrei M, Hunt J, Siemienczuk J, Touchette DR, Middleton B (2004) A first step towards trans-
lating evidence into practice: heart failure in a community practice-based research network. 
Inform Prim Care 12(3). https://doi.org/10.14236/jhi.v12i3.119

OpenAI (Nov 2023) ChatGPT personal communication
Schoenherr T, Speier-Pero C (2015) Data science, predictive analytics, and big data in sup-

ply chain management: current state and future potential. J Bus Logist 36(1). https://doi.
org/10.1111/jbl.12082

Sorger S (2013) Marketing analytics: strategic models and metrics
Sundararajan S (2021) Business analytics-overview, curriculum, opportunities and skills. 

Researchgate.Net
Sundararajan S (2023) MVA-ML. https://github.com/sun-sri/MVA-ML

http://dx.doi.org/10.1080/20479700.2018.1531606
http://dx.doi.org/10.1080/20479700.2018.1531606
http://dx.doi.org/10.1111/biom.12982
http://dx.doi.org/10.1080/10528008.2017.1421049
http://dx.doi.org/10.1080/10528008.2017.1421048
http://dx.doi.org/10.14236/jhi.v12i3.119
http://dx.doi.org/10.1111/jbl.12082
http://dx.doi.org/10.1111/jbl.12082
https://github.com/sun-sri/MVA-ML


29

Learning Objectives

• Acquire Familiarity with the Python Programming Environment.
• Demonstrate the use of Python programming constructs—Variables, Operators, 

Data Structures, Control Flow, and Functions and Libraries.
• Examine Pandas software package functionality for data manipulation.
• Examine NumPy software package functionality for matrix algebra and 

numeric operations.
• Illustrate basic data processing operations.

Overview

In this chapter, we take a whirlwind tour of programming in Python, focusing 
on programming concepts necessary to complete the tutorials and exercises for 
applying statistical, computational, and machine-learning techniques.

Those already familiar with the technical nuances of the programming envi-
ronment offered by Python can skip Sect. 2.1 and directly move to Sect. 2.2, 
where we start programming exercises. Section 2.1.1 introduces the Python soft-
ware ecosystem—Python programming language and associated software pack-
ages. We need an environment to code and test Python programs—an Integrated 
Development Environment or IDE. Section 2.1.2 IDE discusses popular IDEs. 
Section 2.1.3 provides a formal view of the Python programming language.

Chapter 2
Python for Data Analytics

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_2

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_2.

https://doi.org/10.1007/978-981-99-0353-5_2#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_2&domain=pdf


30 2 Python for Data Analytics

The programming constructs are discussed in Sects. 2.2–2.5, along with asso-
ciated tutorials. The sections include Variables and Operators, Advanced Data 
Structures, Control Flow, and Functions and Libraries. This is followed by tuto-
rials on the NumPy package, which is highly effective in numerical computations 
such as linear algebra, Fourier transforms, and matrix manipulation. Tutorials on 
the Pandas package for data analysis and manipulation follow this.

Understanding and preparing data for analysis is an essential step in data ana-
lytics. The last sub-section introduces the basic concepts related to data manipula-
tion—data features, data types, and preprocessing techniques.

Definitions

Data discretization—A numeric variable can be grouped into categories. This 
method is called discretization.
Data preprocessing is an essential step before data mining and model building. 
Missing values, noise, outliers, inconsistencies, multiple data formats, and the like 
make data preprocessing challenging. Data preprocessing includes cleaning, inte-
gration, reduction (of features and data volume), transformation, discretization, 
standardization, and summarization.
Data standardization helps us compare variables measured on different scales, e.g., 
pounds and kilograms. There are many methods for data standardization—min–
max, z-score, and decimal scaling. Data standardization helps in improving the 
performance of specific algorithms.
An integrated development environment (IDE) is a set of software tools that helps 
a programmer develop and test computer programs. Examples include Spyder 
IDE, Jupyter Notebook IDE, and Google Colab IDE.
Keras is a framework for deep learning.
Matplotlib and Seaborn are software packages for data visualization.
NetworkX is a software package for Graphs and Network Programming.
NumPy is a popular software package for matrix algebra and numerical operations.
Outliers are the data points that deviate considerably from the rest of the data in a 
dataset.
Pandas is a powerful, flexible, and easy-to-use data analysis and manipulation tool 
built on top of the Python programming language.
Python is an object-oriented programming language. It is also a structured lan-
guage and a procedural language.
Scikit-learn is a software package for statistics and machine learning.
SciPy is a software package for statistics and optimization.
Statsmodels is a software package for statistics.
TensorFlow is a framework for deep learning.



312.1 The Python Environment

2.1  The Python Environment

Python is one of the top two popular programming languages. It is a free and 
open-source project with numerous existing and emerging software libraries and 
is supported worldwide by researchers, students, programming enthusiasts, and 
numerous communities. Python was created in the early 1990s by Guido van 
Rossum at Centrum Wiskunde & Informatica, a mathematics and computer sci-
ence research institute in Amsterdam. Python Software Foundation, a non-profit 
organization, owns Python-related intellectual property, with its principal office in 
Fredericksburg, Virginia.

This chapter is not a substitute for a regular programming course in Python. 
The chapter focuses on programming concepts necessary for doing the tutorials 
and exercises in this book oriented toward applying statistical, computational, and 
Python-based techniques for data analytics.

2.1.1  The World of Python

Python is a multipurpose programming language that can be used for devel-
oping business applications, websites, scientific applications, statistical models, 
and machine learning models. Python's standard libraries and ever-growing com-
munity contributions allow for endless possibilities of programming—https://docs.
python.org/.

Technically, the capabilities of Python can be summarized as follows:

 1. Pandas package for data access, analysis, and processing.
 2. NumPy package (a Python library for multidimensional matrix-algebra opera-

tions and numerical computations).
 3. NetworkX package for Graphs and Network Programming. For details, refer 

to https://networkx.org/.
 4. Matplotlib graphics library for creating static, animated, and interactive visu-

alizations in Python (the underlying modules of Matplotlib are written in C). 
For cheatsheets and handouts, please refer to https://github.com/matplotlib/
cheatsheets.

 5. Seaborn—a Python data visualization library based on matplotlib. It provides 
a high-level interface for creating rich statistical graphs quickly. For detailed 
information and sample codes, please refer to https://seaborn.pydata.org/.

 6. SciPy algorithms for statistics, optimization, and other computational tech-
niques written in C and wrapped in Python. Please refer to https://scipy.
github.io/devdocs/ for details.

 7. Statsmodels Python package. It complements SCiPy in statistical computa-
tions, including descriptive statistics, estimation, and hypothesis testing. For 
detailed information, you may refer to https://pypi.org/project/statsmodels/.

https://docs.python.org/
https://docs.python.org/
https://networkx.org/
https://github.com/matplotlib/cheatsheets
https://github.com/matplotlib/cheatsheets
https://seaborn.pydata.org/
https://scipy.github.io/devdocs/
https://scipy.github.io/devdocs/
https://pypi.org/project/statsmodels/


32 2 Python for Data Analytics

 8. Scikit-learn Python library for statistics and machine learning, built on SciPy, 
NumPy, and matplotlib libraries.

 9. TensorFlow framework for deep learning—a Python library (that invokes C++ 
modules to construct and execute dataflow graphs). For detailed information 
and code samples, please refer to https://www.tensorflow.org/.

 10. Keras’ deep learning API is written in Python and runs on the TensorFlow 
platform. Please refer to https://keras.io/guides/ for guidance.

 11. Inbuilt libraries for Internet access.
 12. Website development using Python-based frameworks such as Django, and 

Flask.
 13. Desktop GUIs.
 14. Packages for Business application Development.

2.1.2  IDE for Python Programming

An integrated development environment (IDE) is a set of software tools that 
helps a programmer to develop computer programs. The following three compo-
nents form the basic building blocks of an IDE.

• Editor: A text editor for writing program code. It has added features such as 
automatic formatting, syntax check, visual prompts, auto code completion, and 
flagging out simple programming mistakes.

• Code Build: Commands for compiling program code into binary code, packag-
ing it, and executing it.

• Debugger: A program that helps to trace the execution of program code and 
locate bugs if present. Graphical displays help a programmer trace the instruc-
tions and display the associated data (e.g., the value of variables).

Numerous IDEs exist for developing and testing Python programs—Jupyter 
Notebook, Google Colab, and Spyder. We can install Spyder IDE or Jupyter 
Notebook IDE in our local system and use them for programming without internet 
access. To work in Colab, internet access is necessary. The code snippets in this 
book are tested in Google Colab IDE and Spyder IDE.

The author recommends Google Colab IDE—https://Colab.research.google.
com/. It is a product from Google Research. It comes with a set of utilities and 
interfaces that make programming easy. The data in Google Drive can be 
accessed, and the program code can be shared via email with others. It allows par-
allelism using GPUs. A programmer can open and use multiple Colab notebooks 
at the same time. Colab is a hosted Jupyter Notebook service that provides free 
access to computing resources, including GPUs.

The websites of these IDEs provide adequate help with their usage. If you 
are new to programming, start with the simple exercises provided by w3schools 
(https://www.w3schools.com/python/). You can try out code snippets in the lovely 

https://www.tensorflow.org/
https://keras.io/guides/
https://Colab.research.google.com/
https://Colab.research.google.com/
https://www.w3schools.com/python/


33

Table 2.1  Data types Basic data types Advanced data types

Integer (int)
Decimal numbers (float)
Character string (str)
Bool (True/False)
Complex

List
Range
Tuple
Set
Dictionary

2.1 The Python Environment

little pop-up window ‘Try it Yourself’. Then, move on to the Google Colab intro-
duction and exercises (https://Colab.research.google.com/).

2.1.3  Defining Python Programming Language

Primarily, Python is an object-oriented programming language. Python shares 
many other interesting features also. In Python, we are not allowed to use ‘go 
to’ statements that arbitrarily transfer the flow of control—therefore, Python is a 
structured programming language. Python is a procedural language since a Python 
program module consists of a set of instructions that are executed in sequence. We 
can define and use classes and objects in Python, supporting object-oriented pro-
gramming. Python is a dynamically typed language—it is not necessary to declare 
the variable type before assigning a value to it. Python has high-level data types 
suitable for data manipulation and number crunching. The feature-rich Python 
offers numerous benefits over most other programming languages like Fortran, C, 
C++, Java, or R.

The Python program that we write is first compiled into byte code. The byte 
code is platform-independent. The interpreter converts bytecode to instructions 
specific to an operating system (Windows, Mac-OS, etc.). To the programmer, 
the above two steps are transparent. The programmer finds that his source code 
can be run on any platform. Therefore, it is believed that Python is an interpreted 
language.

2.2  Variables and Operators

In Python, variables are not explicitly declared. They are created from assign-
ment statements. Integer (int), Decimal Numbers (float), Character String (str), 
True/False (bool), etc., are some of the basic data types available in Python, 
like any other programming language. List, Tuple, Set, and Dictionary are more 
advanced data types. The primary data types and operators are shown in Tables 2.1 
and 2.2, respectively.

Let us work out some examples. Open a notebook in the IDE of your choice. 
Type the code below. Execute it with the ‘run’ command. The output displayed on 
the monitor is shown after ‘#>>’.

https://Colab.research.google.com/


34 2 Python for Data Analytics

Table 2.2  Operators Operators Symbols

Assignment operators
Arithmetic operators
Comparison operators
Logical operators
Bitwise operators
Membership operators
Identity operators

=, +=, −= etc.
+, −, *, /, %, //, **
==, ! =, >, <, <=, >=
and, or, not
&, |, ^, ~, <<, #>>
in, not in
is, is not

Tutorial 2.2.1 Variables and Operators

# Display "Hello" on the screen
In the Tutorial below, x is a variable. A string (of characters) is assigned 
to x. Therefore, x assumes the data type 'str'. '#' indicates that the rest 
of the line must be treated as a comment

x = "Hello"     
print(x)        
# Hello
#

# The print function
The 'print' is an inbuilt function defined for displaying the output on our 
display monitor. 

x = "Hello"     
y = 'Python!'
print(x,y)
# Hello Python!

# String concatenation
Here, the print function takes a set of parameters, x, and y, and concatenates 
them (appends y after x). Note that when we concatenate two strings, in the 
resultant string, there is no intervening space

x = "Hello"     
print(x)
y = 'Python!'
print(x+y)
#HelloPython!
#

Tutorial 2.2.2 Variable Names

As we learned, in Python, variables of appropriate types are created when a 
value is assigned to them. A variable name must start with a letter or the 
underscore character. A variable name can have alpha-numeric characters and 
underscores only (A to Z, a to z, 0 to 9, _ )

05September = 'Mother's Day'  #invalid variable name
September05 = 'Mother's Day'  #valid variable name
_05September = 'Mother's Day' #valid variable name



352.2 Variables and Operators

World Bicycle Day = '2021 June 3'   #invalid variable name
World-Bicycle-Day = '2021 June 3'   #invalid variable name
World_Bicycle_Day = '2021 June 3'   #valid variable name

Tutorial 2.2.3 Basic Data Types int, float, str, bool

Four variables with different data types are used below. The print function 
receives the four variables as input and displays them all (separated by a 
space) 

i = 10           # int
f = 14.1         # float
b = True         # bool 
s = 'pounds is equal to dollar' # str 
print(i, s, f, b)
# 10 pounds is equal to dollar 14.1 True

Tutorial 2.2.4 Comments

We use '#' to indicate that the rest of the line is a comment text. We use 
''' to enclose comments running into multiple lines (before and after the 
body of text).

# Bool takes one of the values - True or False. 
# Note that the first letter 'T' of True and 'F' of False is in uppercase 
'''
Basic Data Types are:    int, float, str, bool, complex, 
Advanced Data Types are: list, tuple, range, set, dict 
'''

Tutorial 2.2.5 Type Setting and Conversion

We noted earlier that we do not declare any variables in Python. However, 
Python allows us to set the data type if we want to do so

i = 1 
# convert the integer 'i' to float and assign it to the variable f.
f = float(i)   
print('i =', i, "  and i after conversion =",f)
# f = 1   and f after conversion = 2
#
print('data type of f = ',f, type(f))
# data type of f =  2.54 <class 'float'> 
#
# convert the float 'f' to an integer and assign it to the variable i.
i = int(f)   



36 2 Python for Data Analytics

print('f =', f, "  and f after conversion =",i)
# f = 1.0   and f after conversion = 1
# data type of i =  1 <class 'int'>

Tutorial 2.2.6 Assignment Operators

We saw the assignment operator '=' in the previous Tutorials. Assignments 
can be more elegantly done. For example, multiple variables can be assigned 
values, all in a single statement. Many more assignment operators, like += 
-=, *=, /=, etc., are not covered here. 
#

i, f, b, s = 10, 14.1, True, 'pounds is equal to dollar' 
print(i, s, f, b)
# 10 pounds is equal to a dollar 14.1 True

Tutorial 2.2.7 Arithmetic Operators 

The arithmetic operations using Python are demonstrated below.
#
x = 10; y =3
x +  y        # 13   : Addition
x -  y        # 7    : Subtraction
x *  y        # 30   : Multiplication
x /  y        # 3.3333333333333335 : Division
x %  y        # 1    : Modulus (Reminder)
x // y        # 3    : Floor division (Quotient)
x ** y        # 1000 : Exponentiation

Tutorial 2.2.8 Comparison Operators 

The result of a comparison operation will be True or False
x =  2; y = 3
x == y # False : Equal?
x != y # True  : Not equal?
x >  y # False : Greater than?
x <  y # True  : Less than?
x >= y # False : Greater than or equal to?
x <= y # True  : Less than or equal to?

Tutorial 2.2.9 Logical Operators

Logical Operators are 'and', 'or', 'not'. They return True or False
x =  2; y = 3
x < 3 and y < 3  
# False
 



372.3 Advanced Data Structures

# or:  Returns True if one of the statements is true
x < 3 or  x < 3      
# True
 
# not: Reverses the result
not(x < 5 and y < 5) 
# False

Tutorial 2.2.10 Strings

The Python compiler considers a string as an array of characters.
#
s = 'Hello, World!'
print(s)
# Hello, World!
#
print(len(s)) # returns the length of a string
# 13

print(s[0])   # returns the first character of the string
# H

print("lo" in s)  #returns true or false
# True

s[0:5]        # substring from position 0 to 2; 5th position not included
# Hello

Tutorial 2.2.11 Print Formatting - Insert Variables in Strings

This example shows one of the ways to structure the print output. The char-
acters {} can be used as placeholders for variables while printing strings.
#

quantity     = 4
itemNo       = 1234     # Assume 1234 is the item number of Cup Cake
price        = 0.99
Order        = 'I want {} pieces of Cup Cakes Item# {} for $ {} each'
#                      ^                             ^        ^
print(Order.format(quantity,                      itemNo,   price))
# I want 4 pieces of Cup Cakes Item# 1234 for $ 0.99 each

2.3  Advanced Data Structures

This section will explore Lists, Tuple, Set, Range, and Dictionary. This book 
extensively uses two of the above data types: list and range.



38 2 Python for Data Analytics

List

• List items that are ordered and changeable and allow duplicate values.
• Ordered and Indexed: The first item has an index [0], the second item has an 

index [1], etc.
• Changeable: We can update, add, and remove items in a list.
• Allow duplicate values (as they are Ordered and Indexed).

Tuple

• A tuple is a collection of items that are ordered and immutable (cannot be 
changed).

• Ordered and Indexed: The first item has an index [0], the second item has an 
index [1], etc.

• Allow duplicate values (as they are Ordered and Indexed).
• Tuples are immutable: we cannot change, add, or remove items.

Set

• A set is a collection that is unordered, immutable, and unindexed.
• We can remove and add new items using set class ‘methods’.
• Does not allow duplicate values.

Range

• The range() construct returns a sequence of numbers.

Dictionary

• Dictionaries store data values in key: value pairs. Dictionaries can be nested.

Tutorial 2.3.1 Advanced Data Types 

We will first get familiar with three similar data types – List, Tuple, and 
Set.
   •  LIST is ordered, changeable (allows duplicates)
   •  TUPLE is ordered, unchangeable (allows duplicates)
   •  SET is unordered. No duplicates allowed

#
list1 = ['tomato', 'beans', 'carrot', 'beans']  
print(list1[0])
# 'tomato'
tuple1 = ('tomato', 'beans', 'tomato')  
print(tuple1[1])
# 'beans'
set1   = {'tomato', 'beans', 'carrot'}  
print(set1[0])
# TypeError: 'set' object is not subscriptable



392.3 Advanced Data Structures

Tutorial 2.3.2 List operations

The list is an important data structure. 
Let us find out how to access a subset of items from a list. Note that we can 
use positive and negative indices for obtaining a subset.

# Counting the number of elements in a set
list1 = ['tomato', 'beans', 'carrot']  
len(list1)
# 3

# list subsetting
list1 = ['tomato', 'beans', 'carrot']  
# To print the last two items
print(list1[1:3])   
# ['beans', 'carrot']
# Note that, list1[1:3] means print items 1..2. The 3rd item is not 
printed 

# list - 'append' function
# Adding an item to the end of a list
list1 = ['tomato', 'beans', 'carrot'] 
list1.append('pear')  
print(list1)
# ['tomato', 'beans', 'carrot', 'pear']

# list – lookup for an item
# Lookup for an item. Returns True/False
'tomato' in list1     
# True

# list – concatenate two lists
list1 = ['tomato', 'beans', 'carrot','milk']  
list2 = ['bread', 'butter', 'milk']
listBig = list1 + list2  
print(listBig)
# ['tomato', 'beans', 'carrot', 'milk', 'bread', 'butter', 'milk']

# list – insert: Insert item 'plums' at position 0
list1 = ['tomato', 'beans', 'carrot', 'milk', 'beans']  
list1.insert(0,'plums') 
print(list1)
# ['plums', 'tomato', 'beans', 'carrot', 'milk', 'beans']

# list – remove: Remove the first occurrence of the specified item
list1.remove('plums')   
print(list1)
# ['tomato', 'beans', 'carrot', 'milk', 'beans']



40 2 Python for Data Analytics

# How many occurrences of 'beans' are there?
list1.count('beans') 
# 2

# How many occurrences of 'cabbage' are there?
list1.count('cabbage')
# 0

# Find the position of the first occurrence of a particular item
list1.index('beans') 
# 1 
list1.index('carrot') 
# 2

Tutorial 2.3.3 Tuple operations

Note: The triple data type is used only in very few places in this book. 

# A tuple allows duplicates
tuple1 = ('tomato', 'beans', 'tomato')  
print(tuple1)
# ('tomato', 'beans', 'tomato')

# the count of items in a tuple 
len -> length -> number of items 
len(tuple1)  
# 3

# tuple items can be of different data types
tuple2 = (1, 5, 7, True, False, 4.75) 
print(tuple2)
# (1, 5, 7, True, False, 4.75)

# one-item tuple
We must add a comma after the item to create a tuple with only one item. 
Otherwise, Python will consider it to be a string.

tuple3 = ('tomato')   # this is not a tuple. It is a string
print(tuple3)
#tomato

tuple4 = ('tomato',)   #-> this is tuple; note the comma! 
print(tuple4)
#('tomato',)

#a tuple is an ordered collection of items
tuple1 = ('tomato', 'beans', 'tomato')  
print(tuple1[0])   
# tomato



412.3 Advanced Data Structures

#a tuple is not mutable
tuple1[0] = 'cucumber'   
# *** TypeError: 'tuple' object does not support item assignment

#tuple subsetting
Accessing a subset of items from a tuple is similar to that of a list. 
We can use positive and negative indices to obtain a subset.

print(tuple1[0:2]) 
# ('tomato', 'beans')
# Note: tuple1[0:2] means items 0..1. The 2nd item onwards is discarded 

Tutorial 2.3.4 Range construct

The range is a fundamental construct. Range object has just three components: 
start, stop, and increment. The increment can be negative or positive. By 
default, the increment is 1. Range helps to create a sequence of numbers in 
ascending or descending order.

range1 = range (0,100,12)   
type(range1)
# <class 'range'>

range1
# range(0, 100, 12)

listr = list(range (0,100,12)) # this constructs a list
print(listr)
# [0, 12, 24, 36, 48, 60, 72, 84, 96]

# Range (Start, Stop, Increment)
range(0,5,1) means to start with '0', increment by 1, and generate integers 
sequentially up to 5 (but do not include 5)

list(range(0,5,1))  
# [0, 1, 2, 3, 4]

# range(0,5,1) is same as range(0,5).By default, the increment is 1
list(range(0,5))  
# [0, 1, 2, 3, 4]

Tutorial 2.3.5 Dictionary

Dictionaries store data values in key: value pairs. Dictionaries can be nest-
ed. This section is optional for doing the tutorials/exercises in this book. 

#
#Create a dictionary with index 'brand', 'model', 'year'
dict1 = {'brand': 'hyundai', 'model': 'i10', 'year': 2011}
print(dict1)
# {'brand': 'hyundai', 'model': 'i10', 'year': 2011}



42 2 Python for Data Analytics

dict1['brand'] #here key is 'brand'; data value is 'hyundai'
# 'hyundai'

dict1['model']
# 'i10'

dict1['year'] = 2021   # dictionary is mutable
print(dict1)
# {'brand': 'hyundai', 'model': 'i10', 'year': 2021}

#Create a two-dimensional dictionary
vegPrices = {'itemNo':  [1, 3, 4, 8, 10],
'itemName': ['oranges','apples','bananas','peaches','grapes'],
             'unitPrice': [3.5, 2.5, 4, 4, 2.5],
             'unitQty':   [1, 1, 1, 1, 1]}
print(vegPrices)
#
# {'itemNo': [1, 3, 4, 8, 10], 
# 'itemName': ['oranges', 'apples', 'bananas', 'peaches', 'grapes'], 
# 'unitPrice': [3.5, 2.5, 4, 4, 2.5], 'unitQty': [1, 1, 1, 1, 1]}
#
len(vegPrices)
# 4
len(vegPrices['itemNo'])
# 5

Tutorial 2.3.6 Set operations

Note: - This section is optional for doing the tutorials/exercises in this 
book. 

# Set is not ordered and cannot be updated
set1    = {'tomato', 'beans', 'carrot'}
set1[0] 
# TypeError: 'set' object is not subscriptable
set1[1] = 'tomato'
# TypeError: 'set' object does not support item assignment

# Counting the number of elements in a set
len(set1)
# 3

# Duplicate elements are not stored in a set
set2 = {1, 5, 7, 9, 3, 1} 
print(set2)
# {1, 3, 5, 7, 9} # note that item '1': duplicates are not stored

# Set items can be of different data types
set3 = {'tomato', 1, True, 40.4} 

# Set operations



432.4 Control Flow

set1    = {'tomato', 'beans', 'carrot'}
set2    = {1, 5, 7, 9, 3, 1} 
set2.union(set3)          # set union
# {1, 3, 40.4, 5, 7, 9, 'tomato'}

set4.intersection(set1)   # set intersection
# {'beans', 'carrot', 'tomato'}

set4.difference(set1)     # set difference

# {1, 3, 5, 7, 9, 40.4}

2.4  Control Flow

Control Flow Statements

Control flow statements work on the following principle—(a) make a logical deci-
sion and (b) based on the decision, decide which set of statements should be exe-
cuted next. The following are the control flow statements in Python.

• if-else elif statement for decision-making

if condition:

block of statementsto be executed if the condition is true

elif condition:

block of statementsto be executed if the condition is true

else:

block of statementsto be executed if the condition is true

• for loop for iteration

    for variable in range (start, stop, step):

block of statementsto be executed if the condition is true

• while condition:

block of statementsto be executed if the condition is true

Indentation

Indentation refers to the space prefixing a line of code. Python uses indentation to 
identify a block of code under control structures (if, for, while), function defini-
tion, etc. Python will throw an error if indentation is not given correctly.



44 2 Python for Data Analytics

Breaking the Control Flow

Python supports the following statements for breaking the control flow statements:

• continue statement
• break statement
• pass statement.

Tutorial 2.4.1 Control Flow - introductory example

Let us get familiar with two distinct control flow statements by demonstra-
tion. Explanations are provided in the subsequent tutorials.

# if example
x, y = 20, 10
if x > y: 
    print ('the bigger number is x')  
# the bigger number is x

# for example
for x in range(4):          
  print(x)
# 0   1  2  3

Tutorial 2.4.2 if 

This is an important construct.
The logical expression x > y is evaluated in the if statement below. If the 
outcome is True, the print statement is executed. The ':' after the condition 
'x>y' signifies that the 'if block' statements follow. You can use several 
statements, all of which must have the same indentation. 

x, y = 20, 10
if x > y:
    print ('the bigger number is x')  
# the bigger number is x

In the example below, the second print statement must be indented with the 
same space as the first one. If the second statement is out of the if block, 
then it must have the same indentation as if
#

if x > y:
    print ('the bigger number is x')
       print ("... indentation error!")    
# *** Indentation Error: unexpected indent

In the example below, the second print statement must be indented with the 
same space as the first one. If the second statement is out of the if block, 
then it must have the same indentation as if



452.4 Control Flow

#
if x > y:
    print ('the bigger number is x')
   print ("... indentation error!")    
# *** indentation Error: unindent does not match any outer indentation

The example below shows that the second print statement is outside the if 
block. It is fine.

#
if x > y:
    print ('the bigger number is x')
print ("... we are outside the if block!")    
# the bigger number is x
# We are outside the if block!

Tutorial 2.4.3 if ... else ... example

The logical expression x > y is evaluated in the if statement below. If the 
outcome is True, the first print statement is executed. Otherwise, the second 
print statement is executed.

#
x, y = 10, 10
if x > y:
    print ('the bigger number is x')
else:
    print ('the bigger number is y / x and y are equal)
# the bigger number is y / x and y are equal

Tutorial 2.4.4 if ... elif ... else ... example

The logical expression x > y is evaluated in the if statement below. If the 
outcome is True, the first print statement is executed, followed by the print 
‘job over’. Otherwise, the ‘elif’ condition is checked. If the outcome is 
True, the second print statement is executed, followed by the print ‘job 
over’. If the outcome of elif is False, the third print statement is executed, 
followed by the print ‘job over’

#
x, y = 10, 20 
if x > y:
    print ('the bigger number is x')
elif y > x:
    print ('the bigger number is y')  
else:
    print ('x and y are equal')
print('job over')
# x and y are equal
# job over



46 2 Python for Data Analytics

Tutorial 2.4.5 Nested if

We can nest an if statement block within another if statement block and so 
on…, with progressive indentations. 

#
x = 40
if x > 0:
  print('x is a positive number')
  if x % 7 == 0:
     print('and divisible by 7')
  else:
     print('but not divisible by 7') 
# x is a positive number
# but not divisible by 7

Tutorial 2.4.6 pass (a verb used in if statements)

This is an important construct. Pass implies doing nothing. In for, and while 
loops the equivalent construct is 'continue.' 

#
a = 33
b = 34
if b > a:
  pass

Tutorial 2.4.7 for loop with range

This is an important construct. A for loop repeatedly executes a code block 
while iterating over a sequence (range, string, list, tuple, set, or diction-
ary key/value). In the example below, print(x) is repeated 6 times. 

#
for x in range(4):          
  print(x)
# 0
# 1
# 2
# 3

Tutorial 2.4.8 for loop with range (start, stop, step)

The parameters of the range are (start, stop, step). It comes off the for 
loop when it reaches 'stop' or exceeds it. 

#
for x in range(0, 12, 4): 
  print(x)
# 0
# 4             <- (0+4)
# 8             <- (0+4+4) 



472.4 Control Flow

The step can be negative, as shown below
#
for x in range(12, 4, -3):
    print(x)
# 12
# 9             <- 12-3
# 6             <- 12-3-3 

Tutorial 2.4.9 for loop with a string

#
for x in 'mango':    
  print(x)
# m
# a
# n
# g
# o

Tutorial 2.4.10 for loop with list, tuple, set

Note: - This section is optional for doing the tutorials / exercises in this 
book. 

# Iterate through the items
list1 = ['books', 'pen', 'pencil'] 
for x in list1: print(x)
# books
# pen
# pencil

tuple1 = ('books', 'pen', 'pencil')  
for x in tuple1: print(x)

set1   = {'books', 'pen', 'pencil'}   
for x in tuple1: print(x)

Tutorial 2.4.11 break and continue

This is an important construct. When ‘break’ is encountered, the for loop 
terminates

#
list1 = ['books', 'pen', 'pencil', 'eraser']  
for x in list1:
  if x == 'pencil':
    break
  print(x)
# books
# pen



48 2 Python for Data Analytics

When continue is encountered, the subsequent statements under the block are 
not executed; the control jumps over to the next iteration. It is similar to 
the ‘pass’ verb in the if statement. In the following example when the item 
‘pen’ is reached, ‘continue’ is encountered. Control jumps over to the next 
iteration, without printing ‘pen’.

list1 = ['books', 'pen', 'pencil', 'eraser'] 
for x in list1:
  if x == 'pen':
    continue
  print(x)
# books
# pencil
# eraser

Tutorial 2.4.12 list comprehension 

Data analytics professionals frequently use this method.
# Define list1
list1 = ['tomato', 'beans', 'carrot', 'beans'] 
print(list1)
# ['tomato', 'beans', 'carrot', 'beans']

# Get all items in the list that has the letter 'o' in them 
list2 = [i for i in list1 if 'o' in i]    
print(list2)
# ['tomato', 'carrot']

# Get all items in the list that are equal to 'beans' 
list3 = [i for i in list1 if i == 'beans'] 
print(list3)
# ['beans', 'beans']

# List of all numbers divisible by 7
list4 = [i for i in range(0,100,1) if i%17 == 0] 
print(list4)
# [0, 17, 34, 51, 68, 85]

Tutorial 2.4.13 iterations through a dictionary 

Note: - This section is optional for doing the tutorials/exercises in this 
book. 

# Define Dictionary vegPrices, with 5 keys,  
# itemNo, itemName, unitPrice, and uniQty



492.5 Functions and Libraries

vegPrices={'itemNo':    [1, 3, 4, 8, 10],
           'itemName': ['oranges','apples','bananas','peaches','grapes'],
           'unitPrice': [3.5, 2.5, 4, 4, 2.5],
           'unitQty':   [1, 1, 1, 1, 1]}

#print the keys
for i in vegPrices.keys():  
    print(i)
# itemNo
# itemName
# unitPrice
# unitQty

#print the values
for i in vegPrices.values():
    print(i)
# [1, 3, 4, 8, 10]
# ['oranges', 'apples', 'bananas', 'peaches', 'grapes']
# [3.5, 2.5, 4, 4, 2.5]
# [1, 1, 1, 1, 1]

#print the keys and values
for i in vegPrices.keys(), vegPrices.values():
  print(i)

# dict_keys(['itemNo', 'itemName', 'unitPrice', 'unitQty'])
# dict_values([[1, 3, 4, 8, 10], ['oranges', 'apples', 'bananas', 
'peaches', 'grapes'], [3.5, 2.5, 4, 4, 2.5], [1, 1, 1, 1, 1]])

Tutorial 2.4.14 while loop

Note: - This section is optional for doing the tutorials/exercises in this 
book. 
While loop is similar to for loop. The difference is that the condition check 
is done before the execution. In the following example, the value of 'i' is 
checked before entering the statement block below. The code block will be 
executed if i is less than 5; otherwise, the while loop terminates.

#
i = 0
while i < 5:  
  print(i)
  i += 1
# 0
# 1
# 2
# 3
# 4



50 2 Python for Data Analytics

2.5  Functions and Libraries

Functions take a set of parameters separated by a ‘,’. The parameters (or argu-
ments) are enclosed within parathesis () immediately after the function name. All 
Python functions return one value. Numerous functions are available with Python 
libraries. Alternatively, we can define our functions.

Tutorial 2.5.1 Functions and Libraries – An introductory example 

x = [7, 3, 3, 5, 3, 4, 6, 0, 6, 8, 3, 3, 5, 3, 4, 3, 3, 5, 3, 4]

Let us start with a commonly used library - ‘statistics’. This library con-
tains several functions available to all Python users. We need to import the 
library into our programming environment.
Let us try out the ‘mode’ function. It computes the statistics ‘mode’ of a 
distribution. The parameters of a function are provided in parenthesis (), 
immediately following the function name. A comma separates each parameter. 
The ‘mode’ function takes one parameter – a list of numbers.

#
from statistics import mode
mod = mode(x)
print ('mode is', mod)
# mode is 3
#

Tutorial 2.5.2 define your function

# Write a function to return the square of a given number
def square(x): 
    return x * x
#
# Call 'square', with an argument with the appropriate data type 
square(3) 
# 9
#
# Write a function to return the volume of a solid
def volume(l,b,h):
    return l * b * h

Call the function volume, with the required parameters (arguments) matching 
in order and data type. Here, the parameters are length=2; breadth=3; and 
height=4; all integers. (Note that the size of the parameters must also match 
while using arrays or complex structures)

#
print ('volume =>', volume(2,3,4))
# 24 



512.5 Functions and Libraries

Tutorial 2.5.3 lambda - the function without a name

Lambda function is unique to Python. This function does not have a name. Like 
any other Python function, lambda takes several parameters (arguments) and 
returns one output. The difference is that the lambda function can evaluate 
only one expression.

# store the lambda function object in a variable 'volume' 
volume = lambda l, b, h : l * b * h  
# Use 'volume' as a function 
print(volume(3, 4, 5))
# 60

Tutorial 2.5.4 commonly used in-built library functions

Let us take a look at standard functions such as abs, chr, format, int, input, 
len, max, min, pow, round, sum, type

#
abs(-100)         # 100
int(3.1416)       # 3
round(3.1416,2)   # 3.14   #rounds the result to 2 decimal places 
pow(2,10)         # 1024   (power function: 2^10 = 1024)
The functions max, min, sum are self-explanatory

The function 'len' returns the number of items in a list, tuple, set, 
dictionary; the number of rows in a dataset, etc.
#
x = [7, 3, 3, 5, 3, 4, 6, 0, 6, 8, 3, 3, 5, 3, 4, 3, 3, 5, 3, 4]
len(x)   # 20

# format: alignment (justification), comma separator, signs etc
format(1380004385, ',')
# '1,380,004,385'

# input: prompt for an input string
x = input('Enter your name:'); print('Hello, ' + x)
# Enter your name:X
# Hello, X

Note: - The following tutorial on 'chr' is optional for doing the tutorials 
/ exercises in this book. 

chr: returns the character value of an integer in Unicode notation
for i in range(2309,2362): print(chr(i))  # अ, आ, इ, ई,...,श, ष, स, ह
for i in range(48,123): print(i,chr(i))  # 0..9, A..Z, a..z, special 
chars



52 2 Python for Data Analytics

Tutorial 2.5.5 math library

The 'math' and 'cmath' libraries (complex numbers math) provide several math-
ematical functions. 
The ‘math’ library has inbuilt functions for ceiling/floor, combination/ per-
mutation, lcm/gcd, exponentiation (power); hyperbolic functions; logarithmic 
functions; trigonometric functions; special functions; and mathematical con-
stants. Let us take a look at a few common ‘math’ functions: -

#
import math
math.sqrt(829921)   # 911.0
math.ceil(73.27)    # 74
math.floor(73.27)   # 73
math.pow(2,10)      # 1024

Tutorial 2.5.6 date time

import datetime
now = datetime.datetime.now()
print ("Current date and time : ")
print (now.strftime("%Y-%m-%d %H:%M:%S"))
# Current date and time : 
# 2021-11-16 01:02:32
#
import time 
s = time.time()
print(s)
# 1637004821.3311868

Tutorial 2.5.7 random numbers 

See the Numpy section on generating random numbers

Tutorial 2.5.8 advanced string functions

Note: - This section is optional for doing the tutorials/exercises in this 
book. 

#
s  = "on May 11 1997, in midtown Manhattan, IBM's Deep Blue \
beat the reigning world champion, Gary Kasparov, in a six-game match.\
Critics question the worth of research into computer chess. \
MIT linguist Noam Chomsky has said that \
a computer program's beating a grandmaster at chess in 1997 is about as\
interesting as a bulldozer winning an Olympic weight-lifting competition\
Deep Blue is indeed a bulldozer of sorts--its 256 parallel processors\
enable it to examine 200 million possible moves per second and to \
look ahead as many as fourteen turns of play."



532.5 Functions and Libraries

#
s.find('computer')   #  167
s.find('www')        # -1 implies not found
s.count('as')       #  7
# parse into words separated by space
listk=list(set(s.split(' ')))
print(listk) 
'''
['match.Critics', 'processorsenable', 'champion,', 'Kasparov,', ... , 
'Gary', 'per', 'possible', 'winning', 'indeed']
'''
# 
listk.sort() # sort the words list
'''
['11', '1997', '1997,', '200', '256', ...,
'to', 'turns', 'weight-lifting', 'winning', 'world', 'worth'] 
'''
print(listk)
#
len(listk)   # how may words? 71
# word count
for i in listk: print(i, s.count(i)) # word count
'''
11 1
1997 2
...
the 2
to 4
turns 1
weight-lifting 1
winning 1
world 1
worth 1
'''
#

Tutorial 2.5.9 regular expressions library

Note: - This section is optional for doing the tutorials/exercises in this 
book. 
Regular expressions allow us to match text strings, such as characters and 
words and extract string patterns from a given text. In this example, we 
consider the string ‘s’ used in the Tutorial 'advanced string functions'.

#
import re
# locate the first occurrence of substring 'IBM'
x = re.search("IBM",s)
print(x) # <re.Match object; span=(38, 41), match='IBM'>



54 2 Python for Data Analytics

x.span() # (38, 41)

# locate the first occurrence of white space
re.search('\s',s) #<re.Match object; span=(2, 3), match=' '>

re.findall("the", s) # ['the', 'the'] - two occurrences listed

# list the items that are separated by 'space character'
re.split('\s',s)
# >> ['on', 'May', '11',..., 'turns', 'of', 'play.']

re.sub("\s", ",", s) #replace white space with comma
# on,May,11,... ,turns,of,play."

# replace the first two white spaces with #
re.sub("\s", "#", s,2) # "on#May#11 1997...

2.6  Pandas

Pandas is a powerful, flexible, and easy-to-use open-source data analysis and 
manipulation tool, built on top of the Python programming language. Pandas can 
access multiple file formats such as CSV (comma-separated values), excel, JSON, 
HTML, flat files with a fixed format, flat files with delimited values, clipboard, 
SQL, parquet (flat columns), pickle (to serialize/de-serialize objects for parallel 
processing), google big query, ORC, SAS, SPSS, and STATA. Pandas DataFrame 
is a 2D (two-dimensional) data structure, like a spreadsheet, with rows and col-
umns. The Pandas project aims to become the most powerful and flexible open-
source data analysis/manipulation tool available in any language. Pandas is 
actively supported by a vibrant community worldwide who contribute significantly 
to making open-source pandas possible. The Pandas’ community experts provide 
immense support through Stack Overflow.

Having said the above, it may be noted that the section below merely aims to 
provide a simple introduction to the world of pandas to help us navigate through 
the book—nothing more and nothing less! You may refer to https://pandas.pydata.
org/ for detailed information.

Tutorial 2.6.1 pandas - explore the ‘iris’ dataset

# Import seaborn library. 
# refer: https://seaborn.pydata.org/
import seaborn as sb

# Read the iris data file using the load_dataset method of the seaborn library. 
Save it in the pandas DataFrame 'pdf'.

pdf = sb.load_dataset('iris')

https://pandas.pydata.org/
https://pandas.pydata.org/


552.6 Pandas

# check the data type of ‘pdf’. 
type(pdf)
# pandas.core.frame.DataFrame

# check the dimensions of ‘pdf’ - #rows, #columns) 
pdf.shape    
# (150, 5)

pdf.columns   # list the column names
#'sepal_length', 'sepal_width', 'petal_length', 'petal_width','species'

# Print a summary of the DataFrame - columns, data types, non-null counts 
pdf.info()
#
'''

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149           -> 150 rows
Data columns (total 5 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   sepal_length  150 non-null    float64
 1   sepal_width   150 non-null    float64
 2   petal_length  150 non-null    float64
 3   petal_width   150 non-null    float64
 4   species       150 non-null    object 
dtypes: float64(4), object(1)
'''

#
Descriptive statistics for numeric data - central tendencies, dispersion etc, 
excluding 'NaN' (non-null) values

pdf.describe()
#
'''

       sepal_length  sepal_width  petal_length  petal_width
count    150.000000   150.000000    150.000000   150.000000
mean       5.843333     3.057333      3.758000     1.199333
std        0.828066     0.435866      1.765298     0.762238
min        4.300000     2.000000      1.000000     0.100000
25%        5.100000     2.800000      1.600000     0.300000
50%        5.800000     3.000000      4.350000     1.300000
75%        6.400000     3.300000      5.100000     1.800000
max        7.900000     4.400000      6.900000     2.500000

'''
#
# print the data type of each column 
pdf.dtypes



56 2 Python for Data Analytics

#
'''
sepal_length    float64
sepal_width     float64
petal_length    float64
petal_width     float64
species          object
dtype: object
'''

#
# print the first two rows
pdf.head(2) #print the first 2 rows of the DataFrame

'''
   sepal_length  sepal_width  petal_length  petal_width species
0           5.1          3.5           1.4          0.2  setosa
1           4.9          3.0           1.4          0.2  setosa
'''

# print the last two rows
pdf.tail(2) #print the last  2 rows of the DataFrame

#
'''
     sepal_length  sepal_width  petal_length  petal_width    species
148           6.2          3.4           5.4          2.3  virginica
149           5.9          3.0           5.1          1.8  virginica
'''

#
pdf.species # access the column species; same as pdf['species']
pdf['species'] # access the column species; same as pdf.species

#
'''
0 setosa
1 setosa
.. 
149 virginica
Name: species, Length: 150, dtype: object
'''

Tutorial 2.6.2 pandas – accessing a subset of rows/columns

‘iloc’ and ‘loc’ are available for subsetting pandas data frame. Both are 
discussed here. However, iloc is popular
The general method for subsetting of pandas data frame using ‘iloc’ is pdf.
iloc[r1:r2,[c1,c2]], where rows {r1 .. (r2-1)} are selected from which col-
umns c1 and c2 are selected. 

# load iris using load_dataset() method from seaborn library
import seaborn as sb
pdf=sb.load_dataset('iris')
#
pdf.iloc[0:2,[1,3]] # two rows = 0th, 1st; columns 1, and 3



572.7 Numpy

#
'''
   sepal_width  petal_width
0          3.5          0.2
1          3.0          0.2
'''
#
# Other Methods of Subsetting (1) - using a column name in subsetting
pdf.species[0:2] # access the first two rows of the column 'species'
#
'''
0    setosa
1    setosa
'''

#
# Other Methods of Subsetting (2) – no 'loc', no 'iloc'

pdf[0:2]      # two rows = 0th, 1st
#

'''
   sepal_length  sepal_width  petal_length  petal_width species
0           5.1          3.5           1.4          0.2  setosa
1           4.9          3.0           1.4          0.2  setosa
'''

#
# Other methods of Subsetting (3) - using 'loc' instead of iloc
#

For selecting a subset of rows, 'loc' uses the index, whereas, iloc uses in-
teger position. Note that it is common to use iloc

#
pdf.loc[0:2]  # three rows = 0th, 1st, 2nd
#

'''
   sepal_length  sepal_width  petal_length  petal_width species
0           5.1          3.5           1.4          0.2  setosa
1           4.9          3.0           1.4          0.2  setosa
2           4.7          3.2           1.3          0.2  setosa
'''

Tutorial 2.6.3 pandas - filter, to access a subset of data

# load iris using load_dataset() method from seaborn library
import seaborn as sb
pdf=sb.load_dataset('iris')

# filter-1: bool
pdf.species == 'setosa' 
# returns True or False for each of the 150 rows

'''
0       True
1       True
...
148    False
149    False
Name: species, Length: 150, dtype: bool
'''



58 2 Python for Data Analytics

#
# filter-2: selection of a set of rows based on a logical condition 
pdf[pdf.species == 'setosa'] 
#
# filter-3: selection of a set of rows based on a logical condition 
pdf[pdf['species'] == 'setosa'] # filter, same as above 
#

'''
    sepal_length  sepal_width  petal_length  petal_width species
0            5.1          3.5           1.4          0.2  setosa
1            4.9          3.0           1.4          0.2  setosa
2            4.7          3.2           1.3          0.2  setosa
..           ...          ...           ...          ...     ...
47           4.6          3.2           1.4          0.2  setosa
48           5.3          3.7           1.5          0.2  setosa
49           5.0          3.3           1.4          0.2  setosa
'''

#
# filter-4: selection of a set of rows based on a multiple conditions 
# get all rows for species setosa or versicolor
pdf[(pdf['species']=='setosa')   | (pdf['species']=='versicolor')]
#

'''
    sepal_length  sepal_width  petal_length  petal_width     species
0            5.1          3.5           1.4          0.2      setosa
1            4.9          3.0           1.4          0.2      setosa
2            4.7          3.2           1.3          0.2      setosa
..           ...          ...           ...          ...         ...
97           6.2          2.9           4.3          1.3  versicolor
98           5.1          2.5           3.0          1.1  versicolor
99           5.7          2.8           4.1          1.3  versicolor

[100 rows x 5 columns]
'''

#
# filter-5: selecting a set of rows based on an inequality condition

pdf[pdf.sepal_length > 7.5]
#
'''
     sepal_length  sepal_width  petal_length  petal_width    species
105           7.6          3.0           6.6          2.1  virginica
117           7.7          3.8           6.7          2.2  virginica
118           7.7          2.6           6.9          2.3  virginica
122           7.7          2.8           6.7          2.0  virginica
131           7.9          3.8           6.4          2.0  virginica
135           7.7          3.0           6.1          2.3  virginica
'''
#



592.7 Numpy

Tutorial 2.6.4 pandas – sort

import seaborn as sb
pdf=sb.load_dataset('iris')
pdf.columns
#

'''
'sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'
'''

# sorting can be ascending or descending, with multiple sort keys 
pdf.sort_values('species',ascending=False)
pdf.sort_values(['species','sepal_length'],ascending=False)
pdf.sort_values(['species','sepal_length','sepal_width'],ascending=True)
#

     sepal_length  sepal_width  petal_length  petal_width    species
13            4.3          3.0           1.1          0.1     setosa
8             4.4          2.9           1.4          0.2     setosa
38            4.4          3.0           1.3          0.2     setosa
..            ...          ...           ...          ...        ...
135           7.7          3.0           6.1          2.3  virginica
117           7.7          3.8           6.7          2.2  virginica
131           7.9          3.8           6.4          2.0  virginica

Tutorial 2.6.5 Correlation between the variables (using pandas function)

# pandas correlation, rounded to 2 decimals
round(pdf.corr(),2) 
#

              sepal_length  sepal_width  petal_length  petal_width
sepal_length          1.00        -0.12          0.87         0.82
sepal_width          -0.12         1.00         -0.43        -0.37
petal_length          0.87        -0.43          1.00         0.96
petal_width           0.82        -0.37          0.96         1.00

2.7  Numpy

NumPy Basics

NumPy is short for Numerical Python. NumPy serves as the foundational pack-
age for scientific computing in Python. Functioning as a Python library, it offers 
a multidimensional array object, diverse derived objects (like masked arrays and 
matrices), and a collection of routines designed for swift operations on arrays. 
These operations encompass mathematical, logical, shape manipulation, sorting, 
selecting, I/O (input/output), discrete Fourier transforms, introductory linear alge-
bra, basic statistical operations, random simulation, and various other functionali-
ties. For details, please refer to https://numpy.org/doc/stable/user/.

https://numpy.org/doc/stable/user/


60 2 Python for Data Analytics

NumPy is a community-driven open-source project developed by a diverse 
group of contributors. The objective of the section below is limited to a window 
to the world of NumPy that is required to help us navigate through the rest of the 
book.

Tutorial 2.7.1 NumPy - generating random numbers

Let us start with a popular but simple application of NumPy – generation of 
random numbers using numpy library functions 

#
# get one random decimal in the range 0 to 1
import numpy as np
np.random.rand()   #  0.44117932776647417

# get one random integer in the range 0 to 100
np.random.randint(100)   # 62

# create a random integer array of 3*5
x = np.random.randint(100, size=(3, 5)) 
print(x)
#

'''
[[98 62 99 42 23]
 [31 94 48 71 69]
 [ 2 10 46  9  5]]
'''

Tutorial 2.7.2 NumPy - creating ndarray using data enumeration

A ndarray array is an object. In a ndarray, every column must be of the same 
data type. The array has strings, integer, float, and bool in the case shown 
below. All these columns will be stored as 'string' type 

#
import numpy as np
a1 = np.array(['a','b','c',1,2.5,True])
a1.dtype        # dtype('U32') 
# items in ‘a1’ are stored as unicode strings with size < = 32 characters
a1.ndim         # 1               # 1-dimension
a1.shape        # (6,)            # 6 rows

Tutorial 2.7.3 NumPy - creating ndarray using zeros, ones, arrange

This is a popular way of creating a NumPy array of specified dimensions 

import numpy as np
np.ones(5)      #([1., 1., 1., 1., 1.])



612.7 Numpy

np.zeros((2, 9))
#    array([[0., 0., 0., 0., 0., 0., 0., 0., 0.],
#        [0., 0., 0., 0., 0., 0., 0., 0., 0.]])

x = np.arange(10)
x      # ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Tutorial 2.7.4 NumPy - accessing array elements / subsetting

The general method for subsetting in numpy is: Xarray [r1:r2, c1:c2], where 
r1.. (r2-1) rows; c1..(c2-1) columns will be selected. 
(Note that NumPy subsetting is similar to the iloc command syntax of pandas 
DataFrame subsetting. The general method for subsetting of pandas data frame 
using 'iloc' is pdf.iloc[r1:r2,[c1,c2]], where rows {r1 .. (r2-1)} are select-
ed from which columns c1 and c2 are selected. The numpy method allows a 'range' 
of columns to be selected. Note the difference and try to avoid confusion)

#
import numpy as np
a2 = np.array([[1,2,3,4,5], [6,7,8,9,10],['a','b','c','d','e']])

a2[0, 4]   # 5 (element in the cell row:0, column 4)
a2[2, 0]   # a (element in the cell row:3, column 1)
a2[1:3,]   # select all the elements of row-1 and row-2  
#
''' 
array([['6', '7', '8', '9', '10'],
       ['a', 'b', 'c', 'd', 'e']], dtype='<U11')
'''
#
# subset all the elements falling under (row-1 to 2 and columns 2 to 3) 
a2[0:2,2:4]  
#
'''
array([['3', '4'],
       ['8', '9']], dtype='<U11')
'''

Tutorial 2.7.5 NumPy - rules for setting indices in subsetting

import numpy as np
a3 =           np.array(['a','b','c','d','e'])
# array index positions   0   1   2   3   4
# array index positions  -5  -4  -3  -2  -1

# select elements at positions 2, 3; do not select the 4th element
a3[2:4]   # ['c' 'd']

# select elements at positions -4, -3, -2
print(a3[-4:-1])   # ['b' 'c' 'd']



62 2 Python for Data Analytics

# select elements starting at position '0', up to but not including '6'
# traversing by steps of 2  (ie., 0, 2, 4)
print(a3[0:6:2])   # ['a' 'c' 'e']

# select elements below position '5'
print(a3[:5])   # ['a' 'b' 'c' 'd' 'e']
print(a3[:99])  # ['a' 'b' 'c' 'd' 'e']  - as explained above

# select elements from position '3' onwards
print(a3[3:])   # ['d' 'e']

Tutorial 2.7.6 NumPy - how to copy an array

a4 = np.array([1, 2, 3, 4, 5])
x = a4  

This method is not advisable. Changes to a4 will affect x. However, changes 
in x will not affect a4

  
a4[0] = 666   # a4 changed
x             # [666, 2, 3, 4, 5] -> changes in a4 affects 'x'
#

Use copy() method to make a copy of an array, e.g., y = a4.copy(). Then y 
owns the data. The changes in a4 will not affect y

#
a4 = np.array([1, 2, 3, 4, 5])
y = a4.copy() 
a4[0] = 666   
y                 # [1, 2, 3, 4, 5] -> changes in a4 does affect 'y'

Tutorial 2.7.7 NumPy - Filter

import numpy as np
a8 = np.array([10,20,30,40,50,60,70,80,90,100])

filter1 = a8 > 40
a8[filter1]               # [ 50,  60,  70,  80,  90, 100]

filter2 = (a8 > 40) & (a8 < 70)
a8[filter2]               # [50, 60]

filter3 = (a8 < 20) | (a8 > 70)
a8[filter3]               # [ 10,  80,  90, 100]

Assume we have items with multiple data types - bool, int, float, str. They 
will be all designated as the highest data type present – 'str'

a9 = np.array([1,2,3,4,5,6,7,8,9,10,'a','b','c','d','e',
        11.0,12.0,13.0,14.0,15.0,True,False,True,False])



632.7 Numpy

filter4 = a9 > 'a'
a9[filter4]               # ['b', 'c', 'd', 'e'], dtype='<U32'

The following example gives seemingly strange results. The sorting results 
in string order are different from that of number order. For example, string 
'2', '3' etc. are > string '15.0'.

#
filter5 = (a9 > '15.0')
a9[filter5]
#

['2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'True', 
'False', 'True', 'False']

Tutorial 2.7.8 NumPy Functions – Set, Mean, Median, SD, Round

Note: - This section is optional for doing the tutorials/exercises in this 
book. 

import numpy as np
x = [7, 3, 3, 5, 3, 4, 6, 0, 6, 8, 3, 3, 5, 3, 4, 3, 3, 5, 3, 4]
mea = np.mean(x)
med = np.median(x)
print ('mean is', mea, 'median is',med)
# mean is 4.05 median is 3.5
 

The mean and median functions are available as NumPy functions; Mode is un-
available in NumPy. For computing mode, see 'Functions and Libraries'

# np.max, np.std(l) ...
# np.round, np.fix, np.ceil, np.floor, np.trunc ...
  
# Trignometric / Hyperbolic functions
import numpy as np
h = np.array([1, 2, 3, 4, 5, 6, 7, 8])
np.round(np.tanh(h),3)  # hyperbolic tangent, rounded to 3 decimals
# ([0.762, 0.964, 0.995, 0.999, 1.   , 1.   , 1.   , 1.   ])

# set operations on 1D array
s1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
s2 = np.array([2, 4, 6, 8])
np.union1d(s1,s2)             # [1, 2, 3, 4, 5, 6, 7, 8]

np.intersect1d(s1,s2) # [2, 4, 6, 8]



64 2 Python for Data Analytics

Tutorial 2.7.9 NumPy - Flatten (reshape to 1D)

import numpy as np
a6 = np.array([[1,2,3,4], [5,6,7,8],['a','b','c','d']])
a6
#

array([['1', '2', '3', '4'],
       ['5', '6', '7', '8'],
       ['a', 'b', 'c', 'd']], dtype='<U11')

#
a6.reshape(-1)     #reshape(-1) returns 1D array
#

array(['1', '2', '3', '4', '5', '6', '7', '8', 'a', 'b', 'c', 'd'],
      dtype='<U11')
#
a6.flatten()       #flatten returns 1D array; same as reshape(-1) 
a6.flatten('C')    #column wise, the default option 
a6.flatten('F')    #flatten row wise 
#

array(['1', '5', 'a', '2', '6', 'b', '3', '7', 'c', '4', '8', 'd'],
      dtype='<U11')

NumPy—Advanced

The learning from this section is optional for doing the tutorials/exercises in this 
book.

Tutorial 2.7.10 NumPy Advanced - ndarray Reshape; dimensions MN to PQ

We can reshape an array M x N to any shape P x Q, so long as all elements are 
fully covered (MN = PQ). Note that the rows are filled up first

#
import numpy as np
a2 = np.array([[1,2,3,4,5], [6,7,8,9,10],['a','b','c','d','e']])
a2
#

array([['1', '2', '3', '4', '5'],
       ['6', '7', '8', '9', '10'],
       ['a', 'b', 'c', 'd', 'e']], dtype='<U11')

# reshape from 3rows x 5 cols to 5 rows x 3 cols
a5 = a2.reshape(5,3) 
a5 
#

array([['1', '2', '3'],
       ['4', '5', '6'],
       ['7', '8', '9'],
       ['10', 'a', 'b'],
       ['c', 'd', 'e']], dtype='<U11')

#
# Note that items are filled up row-wise in the above example
#



652.8 Data Processing

Tutorial 2.7.11 NumPy Advanced - ndarray Reshape; dimensions MN to PQR

We can reshape an array M x N to any shape P x Q x R, so long as all 
elements are fully covered (MN = PQR). Note that the rows are filled up 
first

#
import numpy as np
a6 = np.array([[1,2,3,4], [5,6,7,8],['a','b','c','d']])
a6
#

'''
array([['1', '2', '3', '4'],
       ['5', '6', '7', '8'],
       ['a', 'b', 'c', 'd']], dtype='<U11')

'''
# reshape from 3rows x 4 cols to 2 x 2 x 3
a7 = a6.reshape(2,2,3)  
# Note that the inner dimensions are filled up first
a7
#

array([[['1', '2', '3'],
        ['4', '5', '6']],

       [['7', '8', 'a'],
        ['b', 'c', 'd']]], dtype='<U11')

#
a8 = np.array([[1,2,3,4,5], [6,7,8,9,10],
     ['a','b','c','d','e'], [11.0,12.0,13.0,14.0,15.0]])
a9 = a8.reshape(5,2,2)
a9

#
array([[['1', '2'],
        ['3', '4']],
       [['5', '6'],
        ['7', '8']],
       [['9', '10'],
        ['a', 'b']],
       [['c', 'd'],
        ['e', '11.0']],
       [['12.0', '13.0'],
        ['14.0', '15.0']]], dtype='<U32')

#



66 2 Python for Data Analytics

Tutorial 2.7.12 NumPy Advanced - ndarray search

import numpy as np
sa = np.array([1,4,5,6,7,2,3,10,8,9,11.5,12.8,13.1,14.6,15.7])

np.where(sa == 6)     # where is '6'? in the array 'sa'?
# array([3]

np.where(sa == 11.5)  # where is '11.5'? in the array 'sa'?
# array([10]

Tutorial 2.7.13 NumPy Advanced - simple sort

The numpy sort function provides many options. For performance, you can even 
specify the sort algorithms - 'quicksort', 'heapsort', 'mergesort', 'tim-
sort'. However, we are exploring only a few options here.

#
import numpy as np

# example-1
sa = np.array([1,4,5,6,7,2,3,10,8,9,11.5,12.8,13.1,14.6,15.7])
sa.dtype        # dtype('float64')
np.sort(sa)     # number order
#

array([ 1. ,  2. ,  3. ,  4. ,  5. ,  6. ,  7. ,  8. ,  9. , 10. , 11.5,
    12.8, 13.1, 14.6, 15.7])
#
# example-2
sb = np.array([1,4,5,6,7,2,3,10,8,9,'c','d','e','a','b',
        11.0,12.0,13.0,14.0,15.0])
sb.dtype        # dtype('<U32')
np.sort(sb)     # string order
#

array(['1', '10', '11.0', '12.0', '13.0', '14.0', '15.0', '2', '3', '4',
    '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e'], dtype='<U32')

Tutorial 2.7.14 NumPy Advanced - sort dimensions

import numpy as np
sd  = np.array([1,4,5,6,7,2,3,10,8,9,11.5,12.8,13.1,14.6])
len(sd) #14
sd1 = sd.reshape(2,7)  # sd1 is an array with 2 rows, 7 columns
sd1
#

array([[ 1. ,  4. ,  5. ,  6. ,  7. ,  2. ,  3. ],
       [10. ,  8. ,  9. , 11.5, 12.8, 13.1, 14.6]])



672.8 Data Processing

#
# sort example-1: row wise sort {this is the default method}
np.sort(sd1, axis=0)   

array([[ 1. ,  4. ,  5. ,  6. ,  7. ,  2. ,  3. ],
       [10. ,  8. ,  9. , 11.5, 12.8, 13.1, 14.6]])

#
# sort example-1: column wise sort
np.sort(sd1, axis=1)   # column wise sort
#

array([[ 1. ,  2. ,  3. ,  4. ,  5. ,  6. ,  7. ],
       [ 8. ,  9. , 10. , 11.5, 12.8, 13.1, 14.6]])

#
# sort example-3: sorts along the last axis
np.sort(sd1, axis=-1)
#

array([[ 1. ,  2. ,  3. ,  4. ,  5. ,  6. ,  7. ],
       [ 8. ,  9. , 10. , 11.5, 12.8, 13.1, 14.6]])

#
# sort example-3: flatten the data; then sort
np.sort(sd1, axis=None) 

array([ 1. ,  2. ,  3. ,  4. ,  5. ,  6. ,  7. ,  8. ,  9. , 10. , 11.5,
       12.8, 13.1, 14.6])

Tutorial 2.7.15 NumPy Advanced - argsort

import numpy as np
chickweight = np.array([['D1', '102.65'],
                        ['D2', '122.62'],
                        ['D3', '142.95'],
                        ['D4', '135.26']])

# sort and print column 1
np.sort(chickweight[:,1])
['102.65', '122.62', '135.26', '142.95']

# sort index of column 1 
chickweight[:,1].argsort()  
[0, 1, 3, 2]

# sort index of column 1, apply sorted index
chickweight[chickweight[:,1].argsort()] 
#
'''

array([['D1', '102.65'],
       ['D2', '122.62'],
       ['D4', '135.26'],
       ['D3', '142.95']], dtype='<U6')

'''



68 2 Python for Data Analytics

#
# sort index of column 0, apply sorted index
chickweight[:, chickweight[0, :].argsort()]
#

array([['102.65', 'D1'],
       ['122.62', 'D2'],
       ['142.95', 'D3'],
       ['135.26', 'D4']], dtype='<U6')

Tutorial 2.7.16 NumPy - join and split arrays

#join arrays
j1 = np.array([1, 2, 3, 4, 5, 6])
j2 = np.array([7, 8, 9, 10, 11, 12])
# the default axis is '0' for an nD array
j3 = np.concatenate((j1,j2),axis = 0) 
j3     # array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])
#
# split an array into three arrays
k1, k2, k3 = np.split(j3,3)           
k1     #  array([1, 2, 3, 4])
k2     # array([5, 6, 7, 8])
k3     # array([ 9, 10, 11, 12])

2.8  Data Processing

The cardinal principles of data mining include—(a) identifying and defining the 
problem to be solved in clear terms and (b) gaining a good understanding of the 
data to be processed. This section introduces the basic concepts of data processing 
and tutorials that will help us navigate the rest of the book.

2.8.1  Measurements, Features, and Targets

Figure 2.1 shows the features that determine customer satisfaction. We have 
a set of features that include functional, financial, psychological, service, etc. 
(Sorger 2013). These features determine the target, customer satisfaction. The fea-
tures are also called feature variables, independent variables, predictors, inputs, 
or attributes. The target goes by different names, such as the target variable, the 
dependent variable, the predicted variable, or the outcome. In our discussions, we 
denote features as vector X of k-dimensions and the target by ‘y’. The features 
and targets are represented as columns in a dataset. The rows in a dataset represent 
observations, cases, data instances, or data objects, as they are variously called. 
These are gathered from various data sources.



69

Fig. 2.1  Measurement types, input variables, and outcome/target variables

2.8 Data Processing

In Fig. 2.1, the demographic, geographic, and psychographic variables are 
grouped under the umbrella ‘segmentation’ variables. They help group the data 
rows into meaningful groups. There are various types of measurements. Cost is a 
decimal. Technically it is a ratio scaled or continuous-valued variable. Customer 
Satisfaction could be measured on an interval scale, e.g., 1–9, where 1 represents 
least satisfied and 9 highly satisfied. All these variables (ratio scaled and interval 
scaled) are called numeric variables.

Gender is a categorical variable with two values. Consider the ranks obtained 
by students in an entrance examination. The rank is a categorical variable. 
Technically, gender is a categorical variable of subtype nominal; rank is a categori-
cal variable of subtype ordinal.

2.8.2  Data Preprocessing Concepts

Data preprocessing is essential before data mining and model building (Han 
and Kamber 2014). Missing values, noise, outliers, inconsistencies, multiple data 
formats, and the like make data preprocessing challenging. Data preprocessing 
encompasses critical steps, including cleaning, integration, reduction (both in 
terms of features and data volume), transformation, discretization, standardiza-
tion, and summarization. This intricate process constitutes a substantial portion, 



70 2 Python for Data Analytics

approximately 70%, of a typical data mining project. Given its magnitude, it 
requires specific attention, but delving into its intricacies goes beyond the scope of 
this book.

Missing data impedes numeric computations. We may discard all the rows 
with missing values for features of interest. Alternatively, the missing values can 
be imputed with the mean (or median or mode), zeros, or other values. However, 
it may be noted that any imputation will affect the original characteristics of the 
feature.

Outliers are the data points that deviate considerably from the rest of the data 
in a dataset. They can substantially impact statistical analyses, building machine 
learning models, and visualizing data. Outliers happen for various reasons, such as 
measurement errors, errors in data capturing, possible natural variations, etc. For 
outlier detection, we may use visual inspection, interquartile range (see Sect. 3.1.3 
visual description), Mahalanobis distance, the z-score of the data points, etc. Care 
must be taken in removing outliers, as it may lead to information loss and bias in 
the analysis. It demands domain knowledge and depends on the goals of the anal-
ysis. The commonly used methods are data transformation (e.g., log transforma-
tions), imputation (e.g., replacement of data points by representative values such 
as the mean), winsorization (replacing extreme values with the nearest values), etc.

Data standardization is a process that involves transformation to a common 
format, discretization, normalization, etc. Data transformation to a common for-
mat may include assigning labels or codes, unit conversion, unified date/time for-
mat, etc. A numeric variable can be grouped into categories—for example, the 
price can be categorized as low, medium, or high. This method is called discreti-
zation. Normalization techniques bring data within a specific range or scale. There 
are many methods for data normalization: min–max, z-score, decimal scaling, 
etc. Z-score standardization is popularly used in statistical data mining. A varia-
ble is standardized by subtracting from its sample mean and by dividing it by its 
standard deviation. An observation xi can be transformed into z-score as follows:

Data standardization helps improve the performance of algorithms like gradient 
descent (a commonly used optimization technique in machine learning).

2.8.3  Data Preprocessing Examples

Tutorial 2.8.1 Preprocessing:  recode category -> integer

Recode category labels as integers, so that they may be used in computations. 
The integer codes are saved in a new column 'species_coded'

#
# list the category labels under the 'species' column
pdf.species.unique()
# ['setosa', 'versicolor', 'virginica']

zi = (xi−xmean)/sd, where sd is the standard deviation of the sample.



712.8 Data Processing

#
# list the number of entries (rows) in each category
pdf.species.value_counts()
#

setosa        50
versicolor    50
virginica     50

#
# recode category labels as integers
pdf['species_coded'] = pdf.species.astype("category").cat.codes
Pdf

     sepal_length  sepal_width  ...    species  species_coded
0             5.1          3.5  ...     setosa              0
1             4.9          3.0  ...     setosa              0
..            ...          ...  ...        ...            ...
148           6.2          3.4  ...  virginica              2
149           5.9          3.0  ...  virginica              2

[150 rows x 6 columns]

Tutorial 2.8.2 Preprocessing: handling missing values

# Missing values must be removed or recoded.
#
import seaborn as sb
pdf  = sb.load_dataset('penguins')
pdf.info()
#

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):
 #   Column             Non-Null Count  Dtype  
---  ------             --------------  -----  
 0   species            344 non-null    object 
 1   island             344 non-null    object 
 2   bill_length_mm     342 non-null    float64    2 null values
 3   bill_depth_mm      342 non-null    float64    2 null values
 4   flipper_length_mm  342 non-null     float64    2 null values
 5   body_mass_g        342 non-null    float64    2 null values
 6   sex                333 non-null    object   11 null values
dtypes: float64(4), object(3)

There are a total of 344 rows. However, some columns have missing values as 
indicated above. For example, in 11 rows, sex is missing

#
# Tutorial 2.8.2.1 Preprocessing:  drop rows with missing values
pdf1 = pdf.dropna()  # 9 rows dropped (344 rows to 333 rows)  
#



72 2 Python for Data Analytics

# Tutorial 2.8.2.2 Preprocessing:  dropna inplace
# deletes rows from the original dataset, with 'inplace' parameter 
pdf2 = pdf.copy()
pdf2.shape      # (344, 7)
pdf2.dropna(inplace=True) 
pdf2.shape      # (333, 7)
#
# Tutorial 2.8.2.2 Preprocessing:  data imputation
# copy pdf to pdf4, so that changes to 'pdf' will not affect 'pdf4' 
pdf4  = pdf.copy()  
#
# replace missing values with mean
blMean = pdf.bill_length_mm.mean()   # compute mean
print(blMean) # 43.92
pdf4.bill_length_mm.fillna(blMean,inplace=True) # impute with mean
#
# replace missing values with mode
SMode = pdf.sex.mode()   # compute mode
print(SMode)  # Male
# replace missing values with mode. The sample is predominantly male. 
# If sex is missing, enter it as 'male'
pdf4.sex.fillna(SMode,inplace=True)   # impute with mode

Tutorial 2.8.3 Preprocessing: z-score standardization

Data standardization (see the discussion in this section) improves the per-
formance of many algorithms and helps us evaluate the comparative influence 
of features

#
import seaborn as sb
from   scipy import stats     # for z-score standardization

pdf = sb.load_dataset('iris')
X =   pdf[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]
Xz = stats.zscore(X)
X.head(2)
#

   sepal_length  sepal_width  petal_length  petal_width
0           5.1          3.5           1.4          0.2
1           4.9          3.0           1.4          0.2
#
Xz.head(2)  # z score standardised; mean =0; sd = 1
#
   sepal_length  sepal_width  petal_length  petal_width
0     -0.900681     1.019004     -1.340227    -1.315444
1     -1.143017    -0.131979     -1.340227    -1.315444



732.8 Data Processing

Tutorial 2.8.4 Preprocessing: categorizing numeric values 

pdf4.body_mass_g.describe()
#

mean     4201.754386
std       801.954536
min      2700.000000
25%      3550.000000
50%      4050.000000
75%      4750.000000
max      6300.000000

#
We are categorizing penguins by mass. We will divide the penguins into 
four categories based on the mass quartiles.
# 
pdf4['WeightCat'] = 0
for i in pdf4.index:
    if   pdf4.loc[i, 'body_mass_g'] > 4750:
         pdf4.loc[i, 'WeightCat'] = 3
    elif pdf4.loc[i, 'body_mass_g'] > 4050:
         pdf4.loc[i, 'WeightCat'] = 2
    elif pdf4.loc[i, 'body_mass_g'] > 3550:
         pdf4.loc[i, 'WeightCat'] = 1
    else:
         pdf4.loc[i, 'WeightCat'] = 0
#
pdf4
#

    species     island  bill_length_mm  ...  body_mass_g     sex  WeightCat
0    Adelie  Torgersen        39.10000  ...       3750.0    Male        1.0
1    Adelie  Torgersen        39.50000  ...       3800.0  Female        1.0
2    Adelie  Torgersen        40.30000  ...       3250.0  Female        0.0
3    Adelie  Torgersen        43.92193  ...          NaN     NaN        0.0
..      ...        ...             ...  ...          ...     ...        ...
339  Gentoo     Biscoe        43.92193  ...          NaN     NaN        0.0
340  Gentoo     Biscoe        46.80000  ...       4850.0  Female        3.0
341  Gentoo     Biscoe        50.40000  ...       5750.0    Male        3.0
342  Gentoo     Biscoe        45.20000  ...       5200.0  Female        3.0
343  Gentoo     Biscoe        49.90000  ...       5400.0    Male        3.0

[344 rows x 8 columns]
'''



74 2 Python for Data Analytics

Tutorial 2.8.5 Preprocessing: Creating Pandas DataFrame from arrays 

# Tutorial 2.8.5.1 pandas – Creating Pandas DataFrame from a 2D array 
import pandas as pd
a = [[3,2],[5,2]]             #data
column_names = ['project_perf', 'project_plan']  #columns
# create pdf
pdf = pd.DataFrame(columns = column_names, data=a)
pdf   # print the contents of pdf
#

   project_perf  project_plan
0             3             2
1             5             2

#
# Tutorial 2.8.5.2 pandas – Creating Pandas DataFrame from 1D arrays
import pandas as pd
# create an empty pandas DataFrame
pdf = pd.DataFrame()
# load pdf DataFrame from lists, into two newly created columns
pdf['project_perf'] = [3,2,5,3,2,6,1,2,5,2,3,4,3,3,4]
pdf['project_plan'] = [5,2,4,4,3,5,2,2,4,2,4,4,4,4,3]

Tutorial 2.8.6 Preprocessing: Exploring Pandas DataFrame Data structure 

# Tutorial 2.8.6.1 create pandas DataFrame and Explore it
pdf = pd.DataFrame()
pdf['project_perf'] = [3,2,5,3,2,6,1,2,5,2,3,4,3,3,4]
pdf['project_plan'] = [5,2,4,4,3,5,2,2,4,2,4,4,4,4,3]
#
pdf   # print the contents of pdf
#

    project_perf  project_plan
0              3             5
1              2             2
..
13             3             4
14             4             3

# 
pdf.project_perf   # print the first column
pdf.project_plan   # print the second column
pdf.iloc[0]        # print the first row
#

project_perf    3
project_plan    5
Name: 0, dtype: int64

# 



752.8 Data Processing

# Tutorial 2.8.6.2 column names and data values
#
print (pdf.columns)   # print the column names
# Index(['project_perf', 'project_plan'], dtype='object')
#
pdf.values    # print the data
#

array([[3, 5],
       [2, 2],
       [5, 4],
..
<more data>
..

#
# Save the column names and print them iteratively
col = list(pdf.columns)   # save the column names in a list
for i in col: print(i)   # print the column names from the list
#
# print the column values column by column
for i in col:
    print('contents of column',i,'\n',pdf[i])
#
# Tutorial 2.8.6.3 using row index
# print the first two rows programmatically
for i in pdf.index: 
    print(i,pdf.iloc[i])
    if i == 1: break 
#

0 project_perf    3
  project_plan    5
Name: 0, dtype: int64
1 project_perf    2
  project_plan    2
Name: 1, dtype: int64

#
pdf.shape       # (15, 2)
#
# Tutorial 2.8.6.4 remove duplicates
# remove the duplicates; save the result in another pdf 
pdf2 = pdf.drop_duplicates()  
pdf2.shape      # (9, 2);  15 rows to 9 rows (6 rows deleted)
#
# delete the duplicates "inplace" 
pdf3 = pdf.copy()
# physically delete the duplicates of pdf3 dataframe
pdf3.drop_duplicates(inplace=True) 
pdf3.shape      # (9, 2)



76 2 Python for Data Analytics

Tutorial 2.8.7 Preprocessing: Pandas to/from NumPy

import numpy as np
import pandas as pd
#
# Creating and loading a pandas data frame from ndarray
array1 = np.zeros([15,2])
array1[:,0] = np.array([5,2,4,4,3,5,2,2,4,2,4,4,4,4,3])
array1[:,1] = np.array([3,2,5,3,2,6,1,2,5,2,3,4,3,3,4])
array1[0:2]
array([[5., 3.],
       [2., 2.]])
# creating column names
column_names = ['performance','plan']
# creating the DataFrame
pdf = pd.DataFrame(data = array1, columns = column_names)
pdf.head(2)
#

   performance  plan
0          5.0   3.0
1          2.0   2.0

#
array2 = pdf.to_numpy() # convert back pandas DataFrame to ndarray 
array2[0:2]
array([[5., 3.],
       [2., 2.]])

Tutorial 2.8.8 Preprocessing: NumPy to PDF, Write to local disk

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
#
ndaX, nday = load_iris(return_X_y=True)
type(ndaX) #numpy.ndarray
ndaX[0:2]
#

array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2]])

#
pdfX=pd.DataFrame(ndaX)  # Convert ndarray to pandas DataFrame
pdfX.iloc[0:2]
#



77Data Analytics in Action

     0    1    2    3
0  5.1  3.5  1.4  0.2
1  4.9  3.0  1.4  0.2

# Write the PDF out to the local disk as CSV file 
# Do not save 'row indices'
pdfX.to_csv('pdfX.csv', index=False)
#
# read from local disk.
pdfXread = pd.read_csv('pdfX.csv') 
pdfXread.head(2)

     0    1    2    3
0  5.1  3.5  1.4  0.2
1  4.9  3.0  1.4  0.2

Data Analytics in Action

Python Interface to Apache Spark for Big Data Analysis
Apache Spark is an open-source data processing engine for big datasets, like 
Hadoop. Spark can execute tasks 100 times faster than Hadoop for smaller 
workloads, using random access memory (RAM) to cache and process data 
instead of a file system. You may refer to Apache Spark (2023) for detailed 
information.

Spark’s SQL analytics engine processes distributed SQL queries faster 
than most data warehouses. Spark supports big data analysis on a petabyte 
scale. Spark platform helps to develop machine learning models and scale 
them up for deployment in fault-tolerant clusters with thousands of cores. 
Spark is written in Scala programming language. Spark provides a powerful 
platform for real-time processing with streaming data and batch data pro-
cessing, using Python, SQL, Scala, Java, or R. Spark features include Spark 
Streaming, MLlib (Machine Learning), Spark SQL, and GraphX.

PySpark is a Python API for Spark. In addition, PySpark provides a 
Python interface with resilient distributed datasets (RDDs), the fundamen-
tal data structure of Spark. PySpark allows us to write Spark applications 
using Python APIs. PySpark shell allows interactive analysis of data in a dis-
tributed computing environment. PySpark supports most of Spark's features, 
such as Spark SQL, DataFrame, Streaming, MLlib (Machine Learning), and 
Spark Core. Please refer to Apache Spark (2023) for details.



78 2 Python for Data Analytics

Summary

We did a whirlwind tour of programming in Python and covered necessary pro-
gramming concepts to do the tutorials and exercises for applying statistical, com-
putational, and machine learning techniques.

Python is one of the top two popular programming languages. Python's stand-
ard libraries and ever-growing community contributions allow for endless pro-
gramming possibilities. Python is supported by popular packages such as Pandas 
for data analysis and manipulation, NumPy for matrix algebra and numerical oper-
ations, NetworkX for Graphs and Network Programming, Matplotlib, and Seaborn 
for data visualization, SciPy and Statsmodels for statistics, and optimization, 
Scikit-learn for statistics and machine learning, TensorFlow and Keras framework 
for deep learning, etc.

An integrated development environment (IDE) is a set of software tools that 
helps a programmer develop and test computer programs. There are numerous 
IDEs. Spyder IDE or Jupyter Notebook IDE can be installed in our local system. 
Google Colab IDE needs internet access. The code snippets in this book are tested 
in Google Colab IDE and Spyder IDE. Google Colab makes code sharing easy and 
allows parallelism through GPUs.

Python is an object-oriented programming language. Python is also a structured 
language and a procedural language. The Python program is first compiled into 
byte code. The byte code is platform-independent. The interpreter converts byte 
code to instructions specific to an operating system (Windows, Mac-OS, etc.). To 
the programmer, the above two steps are transparent. In Python, variables are not 
explicitly declared. They are created from assignment statements. The primary data 
types include Integer (int), Decimal Numbers (float), Character String (str), True/
False (bool), etc. List, Tuple, Set, and Dictionary are advanced data structures.

Pandas is a powerful, flexible, and easy-to-use data analysis and manipulation 
tool, built on top of the Python programming language. Pandas can access mul-
tiple file formats such as CSV (comma-separated values), excel, JSON, HTML, 
SQL, parquet, pickle, and Google Big Query. Pandas DataFrame is a 2D (two-di-
mensional) data structure, like a spreadsheet, with rows and columns. NumPy is 
short for Numerical Python. It is highly effective in array maths like linear alge-
bra, Fourier transforms, matrix manipulation, etc.

In marketing research, data may typically consist of three groups—a set of fea-
ture variables, a target variable, and a set of segmentation variables. In our dis-
cussions, we denote features as vector ‘X’ of k-dimensions and target by ‘y’. The 
features and targets are represented as columns in a dataset. The rows in a dataset 
represent observations, cases, data instances, or data objects, as they are variously 
called. These are gathered from various data sources.

There are various types of measurements—numeric (both ratio-scaled and 
interval-scaled), and categorical (nominal or ordinal).

Data preprocessing is an essential step before data mining and model building. 
Missing values, noise, outliers, inconsistencies, multiple data formats, and the like 



79Questions

make data preprocessing challenging. Data preprocessing includes cleaning, inte-
gration, reduction (of features and data volume), transformation, discretization, 
standardization, and summarization.

We may discard the data instances with missing values or impute them with 
a value like the mean. Data standardization helps us compare variables measured 
on different scales, e.g., pounds and kilograms. There are many methods for data 
standardization—min–max, z-score, decimal scaling, etc. Data standardization 
helps in improving the performance of certain algorithms. A numeric variable can 
be grouped into categories—this method is called discretization.

Questions

Comprehension

1. How do you define Python Programming Language? Is it an interpreted lan-
guage or a compiled language?

2. Is Python a procedural language or an object-oriented programming language?
3. Describe the Python environment (associated packages/libraries).
4. How are strings and arrays related in Python?
5. Describe the basics of data preprocessing.

Write short notes on the following, with suitable examples:

 6. Python variable naming
 7. Python basic data types
 8. Python data structure—List, Tuple, Set, and Dictionary
 9. Control flow in the Python programming language
 10. Python ‘function’
 11. Python lambda function
 12. missing value analysis and processing.
 13. the difference between the Python operators ‘=’ and ‘==’
 14. range data type
 15. list—subsetting, lookup for an item
 16. break and continue in for loop
 17. pandas—filter, sort
 18. ndarray—accessing array elements, subsetting, reshape, filter, search, sort, 

argsort

Application

19. Model a business application, e.g., understanding customer satisfaction and 
relating major features with outcomes.

20. Write code to generate 10 random numbers between 0 and 1.
21. Write a note on list comprehension with examples.



80 2 Python for Data Analytics

22. Write a note on regular expression functions with examples.
23. Write a note on missing value handling in Pandas, with code examples.
24. Write coding examples to show how to transform a 2D NumPy array to 

Pandas DataFrame and vice versa.

Exercises

The questions in this section are based on two datasets available with the sea-
born package—the diamonds and planets datasets. Use the diamonds dataset for 
exercises 2.1 to 2.7. Use the planets dataset discussed in this Chapter for exercise 
2.8.

Exercise 2.1 Variables Tryout the learnings from tutorials under Variables.

Exercise 2.2 Operators Tryout the learnings from tutorials under Operators.

Exercise 2.3 Advanced Data Types Tryout the learnings from tutorials under 
Advanced Data Types.

Exercise 2.4 Control Flow Tryout the learnings from tutorials under Control 
Flow.

Exercise 2.5 Functions and Libraries Tryout the learnings from tutorials under 
Functions And Libraries.

Exercise 2.6 Pandas Tryout the learnings from tutorials under Pandas.

Exercise 2.7 NumPy Tryout the learnings from tutorials under NumPy.

Exercise 2.8 Data Preprocessing Using the dataset planets from Seaborn, try the 
learnings from tutorials in ‘Data Preprocessing’.

References

Apache Spark (2023) Apache Spark. Apache Spark. https://spark.apache.org/
Han J, Kamber M, Pei J (2014) Data mining. Concepts and techniques (The Morgan Kaufmann 

Series in Data Management Systems). In: Proceedings—2013 international conference on 
machine intelligence research and advancement, ICMIRA 2013, 3rd ed

Sorger S (2013) Marketing analytics: strategic models and metrics

https://spark.apache.org/


81

Learning Objectives

• Describe random numbers and the theory of probability.
• Obtain an overview of descriptive statistics.
• Examine discrete probability distributions.
• Examine continuous probability distributions.
• Illustrate sampling and sampling methods.
• Illustrate sampling distributions and central limit theorem.
• Discuss point and interval estimates.

Overview

This chapter provides an overview of the basic concepts of probability, infer-
ential, and descriptive statistics. The chapter explores discrete and continuous 
probability distribution functions. An examination of sampling methods, sampling 
distributions, and central limit theorem follows this. Finally, point and interval 
estimates are introduced.

Definitions

Binomial Distribution: The binomial distribution represents the discrete prob-
ability distribution of the count of successes in a series of ‘n’ independent 

Chapter 3
Introduction to Probability and Statistics

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_3

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_3.

https://doi.org/10.1007/978-981-99-0353-5_3#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_3&domain=pdf


82 3 Introduction to Probability and Statistics

experiments, where each experiment is a success/failure (dichotomous) event with 
a probability of success denoted by ‘p’.
Box Plot: Box plots help us to visualize the measures of location and dispersion 
using simple plots.
Central Limit Theorem: CLT states that, as the sample size increases, the sampling 
distributions closely approximate the normal distribution and become clustered 
around the population mean for all distributions of independent, identically distrib-
uted variables with finite variance.
Chi-Square Distribution: Chi-Square Distribution is a continuous probability dis-
tribution used to compare the distribution of a categorical variable in a sample 
with the distribution of a categorical variable in another sample. The curve starts 
with a zero on the left side and extends to infinity on the right.
Descriptive statistics: There are two approaches to descriptive statistics—
Visualization and Summarization using numbers. Visual techniques include box 
plots, histograms, frequency distributions, scatter plots, etc. Summary statistics 
include location or central tendencies, dispersion, and shape.
Event: A random experiment is a phenomenon whose outcome cannot be predicted 
with certainty. The set of possible outcomes is called the sample space. An event 
(a probabilistic event) is one or more possible outcomes of a random experiment.
Histogram: A histogram shows the frequency distribution of a numeric variable.
Inferential Statistics: The process of estimating the population parameters (for 
example, mean and standard deviation) from sample data is called statistical 
inference.
Interval estimate: A statistic (e.g., mean) computed from a data sample gives a 
point estimate of the population from which the sample is drawn. The computed 
mean will vary from sample to sample. Therefore, we state that the population 
means lie within a specific interval, with a certain confidence. This is called an 
interval estimate.
Kurtosis: Kurtosis indicates the relative peakedness or flatness of the frequency 
distribution. Kurtosis is the fourth moment of the standardized score of X.
Normal distribution: The normal (or Gaussian) distribution is a continuous proba-
bility distribution with a bell-shaped probability density function.
Probability: Probability is the likelihood of an event occurring. Probabilities are 
expressed as fractions/decimals between zero and one.
Sampling distribution: The probability distribution of all possible values of the 
sample statistic is known as the sampling distribution.
Sampling: In practice, investigating the entire population may not be possible. 
Therefore, information is collected from a part of the population, known as a sam-
ple. We call this method ‘sampling’.
Scatter Plot: A scatter plot is a joint distribution of the two variables.
Skewness: Skewness is the degree of distortion from a normal distribution. 
Skewness is the third moment of the standardized score of X.



833.1 Introduction

Standard normal distribution: The standard normal distribution is a special case 
of the normal distribution with the mean equal to zero and the standard deviation 
equal to 1.
Statistical independence: If the outcome of an event does not affect the outcome 
of another, then the events are called independent. There are three types of proba-
bilities under statistical independence—marginal probability, joint probability, and 
conditional probability.
Stem and leaf plot: A stem and leaf plot shows the rank order of all the items in a 
dataset and the shape of the distribution.
T-distribution: The ‘t-distribution’ is a continuous probability distribution that 
assumes a bell-shaped symmetric curve. As the sample size, n increases, the t-dis-
tribution approaches the standard normal distribution.

3.1  Introduction

The official government statistics are as old as recorded history. However, the 
word statistics was first used by Gottfried Achenwall (Year 1719–72). He used the 
term to refer to a comprehensive summary of a nation's social, political, and eco-
nomic aspects.

While we witness the breathtaking pace at which machine learning and deep 
learning bring disruptive innovations in all spheres of life, it is incredible that 
this domain has humble origins in twentieth-century statistics. Karl Pearson, who 
is known for the chi-square test (The year 1900); William Sealy Gosset who is 
known for the t-test (The year 1908); and Ronald A Fisher, who is known for 
ANOVA and F-test (The year 1918), are considered to be the pioneers of mod-
ern statistics. Today, statistics find application in almost all branches of science. 
Machine learning and deep learning rely heavily on statistics.

This chapter introduces the fundamentals of probability and statistics that form 
the basis of the rest of the book. Under probability, we will learn the basics of 
random events and the rules that govern them. Statistical methods can be broadly 
divided into two categories, as shown below.

• Descriptive statistics
• Inferential Statistics

As we know, graphs, charts, tables, and aggregations make it easier to under-
stand data. All these are examples of descriptive statistics. While we can compute 
the mean or variance of a data sample, we may need to be certain that these ‘point’ 
estimates will hold good for the entire population. Statistical inference is estimat-
ing the population parameters (for example, mean ‘μ’ and standard deviation ‘σ’) 
from sample data. The method and techniques of statistical inference can be used 
for making decisions under conditions of uncertainty.



84 3 Introduction to Probability and Statistics

Table 3.1  Penguin DataFrame

Features 
measured

Data 
type

Statistics bill_ 
length_mm

bill_ 
depth_mm

flipper_ 
length_mm

body_ 
mass_g

Species object count 333 333 333 333

Island object Mean 43.99 17.16 200.97 4207.06

Bill_length_mm float64 SD 5.47 1.97 14.02 805.22

Bill_depth_mm float64 Min 32.1 13.1 172 2700

Flipper_length float64 Q1–25% 39.5 15.6 190 3550

Body_mass_g float64 Q2–50% 44.5 17.3 197 4050

Sex object Q3–75% 48.6 18.7 213 4775

Total rows 333 Max 59.6 21.5 231 6300

3.2  Descriptive Statistics

There are two approaches to descriptive statistics—Visualization and 
Summarization using numbers. Visual techniques such as box plots, histograms, 
frequency distributions, and scatter plots, give a visual description of the data. 
Summarization using numbers, or summary statistics as they are called, are num-
bers that emerge from a broad category of measurements such as (Malhotra, 
2020):

1. Location or Central Tendencies (Mean, Median, Mode, Quartiles …)
2. Dispersion (Variance, Standard Deviation, Range, Outliers …)
3. Shape (Skewness, Kurtosis …)

3.2.1  Measures of Location

Mean (or arithmetic mean) is highly influenced by extreme values. While deal-
ing with variables whose values change over a period of time, we observe the 
average rate of change. In such cases, the geometric mean is preferred over the 
arithmetic mean. For example, the geometric mean shows multiplicative effects 
over time in compound interest and inflation calculations.

The median is a single value from the dataset that measures the central item in 
the data. We must sort the data before we can calculate the median. Consider the 
penguin dataset shown in Table 3.1/Chapter 1.6. The median mass is 4050 gm. 
This implies that about 166 penguins have a mass above 4050 gm, and 166 have 
a mass below 4050 gm. We need to sort the data before we calculate the median. 
Extreme values do not influence the median. For example, there may be a few 
obese penguins, and they will not sway our calculations.

Mode differs from the mean but is similar to the median because the arithmetic 
process does not calculate it. The mode can be used as a measure of location for 

http://dx.doi.org/10.1007/978-981-99-0353-5_1


85

(a) Box Plot – Mass / Species (b) Box Plot – Mass / Species / Island

Fig. 3.1  Box Plot—mass/species/island

3.2 Descriptive Statistics

quantitative and qualitative data. Mode is unaffected by extreme values and can be 
used for open-ended data. If the frequency of penguins is the highest in the range 
of 3700–3800 gm (we have 25 penguins in this category), the mode is roughly in 
the range of 3700–3800 gm. Mode is not affected by extreme values, just like the 
median. Note that data can be multi-modal—having two or more modes.

3.2.2  Measures of Dispersion

The range is the difference between the highest and lowest observed values. 
The variance of a random variable or distribution is the average or mean of the 
squared difference between each value of the variable and its expected value or 
mean. Standard deviation is the square root of the variance. It is a widely used 
measure of dispersion. Extreme values in distribution affect the value of standard 
deviation, as well as the mean.

3.2.3  Visual Description

Box plots help us to visualize the measures of location and dispersion using 
simple plots. See Figs. 3.1a andb. The boxes show quartiles (Q1, Q2 = Median, 
Q3). The whiskers are at a distance of 1.5 * (Q3–Q1) from Q2. The points outside 
the whiskers are marked as outliers (see Sect. 2.8.2). For example, check Fig. 3.2: 
Chinstrap species of dream island. Note that there are no clear-cut rules for deter-
mining the distance criteria for outliers; it rests at the researcher's discretion based 
on the research problem.

A histogram shows the frequency distribution of a numeric variable. It is a 
series of rectangles, each proportional in width to the range of values within a 
class and proportional in height to the number of items falling in the class. The 



86 3 Introduction to Probability and Statistics

(a) Mass / Species (b) Mass / Island

Fig. 3.2  Histogram—mass/species/island

(a) Bill Length / Width (b) Bill Length / Width / Species

Fig. 3.3  Scatter plot and KDE plot

height of the bar for each class corresponds to the number of items in the class. 
See Figs. 3.2a and b. A frequency curve sketches an outline of the data pattern 
more evident than a histogram.

Figure 3.3a shows a scatter plot of two variables—Bill Length by Bill Width. 
This is a joint distribution of the two variables. Figure 3.3b shows a two-dimen-
sional KDE (kernel density estimation) plot. Since two variables are involved, it 
is equivalent to the scatter plot. The distribution is further subdivided into three 
groups, by species, using color coding (Figs. 3.4 and 3.5).

A stem and leaf plot shows the rank order of all the items in a dataset and the 
shape of the distribution. It is in a way similar to a histogram. It is used in explora-
tory data analysis.



87

Fig. 3.4  Pandas plot (Histogram of all Numeric Variables)

Fig. 3.5  matplotlib.pyplot—scatter plot of all pairs of numeric variables

3.2 Descriptive Statistics



88 3 Introduction to Probability and Statistics

Tutorial 3.2.1 Data Description by Visual Plots

Matplotlib is a Python library for plots. Seaborn gives rich graphics, and it 
uses matplotlib functions - refer https://seaborn.pydata.org/

import matplotlib.pyplot as plt
import seaborn as sb
sb.set(font_scale=1.5)  #set font size to 150%

d=sb.load_dataset('penguins')
d.dropna(inplace=True) # drop rows having null valued cells
d.describe()    # descriptive statistics of all numeric variables

Figure 3-1(a): boxplot of mass by species
sb.boxplot (data=d, x='body_mass_g', y='species')

Figure 3-1(b): boxplot of mass by species and island
sb.boxplot (data=d, x='body_mass_g', y='species', hue='island')

Figure 3-2(a): histogram of mass by species
sb.histplot(data=d, x='body_mass_g', hue='species',multiple='stack')

Figure 3-2(b): histogram of mass by island
sb.histplot(data=d, x='body_mass_g', hue='island',element='step' )

Figure 3-3(a) Scatter Plot 
plt.scatter(data=d, x='bill_length_mm', y ='flipper_length_mm')
plt.xlabel('bill_length_mm')
plt.ylabel('flipper_length_mm')

Figure 3-3(b) KDE Plot
sb.kdeplot (data=d, x='bill_length_mm', y ='flipper_length_mm',

                hue='species', shade=True)

Strip Plot
sb.stripplot(hue='sex', y='body_mass_g', x='island', data=d)

Tutorial 3.2.2 Pandas Plot

import seaborn as sb
pdf = sb.load_dataset('iris')

See Figure 3-4: Histograms of all numeric variables
pdf.hist(bins=100)
#pdf.hist(bins=100, by='species')

https://seaborn.pydata.org/


893.3 Probability

Tutorial 3.2.3 Basic Matplotlib Plot

import seaborn as sb                   # for loading the iris dataset
import matplotlib.pyplot as plt        # for graphics

pdf  = sb.load_dataset('iris')
leg  = ['sl.sw', 'sl.pl', 'sl.pw', 'sw.pl', 'sw.pw', 'pl.pw' ]

See Figure 3-5: Scatter Plot of all pairs of Numeric Variables
plt.scatter(pdf['sepal_length'], pdf['sepal_width'],  marker='1')
plt.scatter(pdf['sepal_length'], pdf['petal_length'], marker='2')
plt.scatter(pdf['sepal_length'], pdf['petal_width'],  marker='3')
plt.scatter(pdf['sepal_width'],  pdf['petal_length'], marker='4')
plt.scatter(pdf['sepal_width'],  pdf['petal_width'],  marker='+')
plt.scatter(pdf['petal_length'], pdf['petal_width'],  marker='x')

plt.title('iris flower features 4x4', fontsize=14)
plt.xlabel('length / width', fontsize=14)
plt.ylabel('length / width', fontsize=14)
plt.legend(leg, loc='lower right')
plt.xlim(0,11)
plt.xticks(range(0,11,1))
plt.grid()
plt.show()

3.3  Probability

Probability is the likelihood of an event occurring. Many events cannot be pre-
dicted with total certainty. How likely they are to happen, using the concepts of 
probability.

Jacob Bernoulli (1654–1705), Abraham de Moivre (1667–1754), Thomas 
Bayes (1702–61), and Joseph Lagrange (1736–1813) are credited with the devel-
opment of probability formulae and techniques. The theory of probability forms 
the basis for statistical applications. Probability is the chance that something will 
happen. Probabilities are expressed as fractions/decimals between zero and one. 
Assigning a probability of zero means that something will never happen, a proba-
bility of one indicates something will happen.

A random experiment is a phenomenon whose outcome cannot be predicted 
with certainty, such as flipping a coin or rolling a die. See Fig. 3.6.

Assume a random experiment. The set of possible outcomes is called the sam-
ple space. In probability theory, an event is one or more of the possible outcomes 
of a random experiment. Consider a coin-tossing experiment. Getting a tail when 
tossing a coin is an event. The probability of this event is 0.5. Getting two 
tails when tossing a coin two times is an event. The probability of this event is 
0.5 × 0.5 = 0.25. Consider choosing a card from a deck of playing cards—choos-
ing a King from a deck of cards (any of the 4 Kings out of 52 cards) is an event 
(with a probability of 4/52). Consider rolling two dice. There are 6 × 6 possible 



90 3 Introduction to Probability and Statistics

0 2 4 6

2

4

6

8

10

12

Frequency

Ou
tc

om
e

Experiment of throwing 2 
Dice

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

2
3
4
5
6
7
8
9

10
11
12

Probability

Ev
en

t o
f g

e�
ng

...

Experiment of throwing 2 Dice

Fig. 3.6  a Experiment and outcome space. b probability of events

Co
in

 T
os

s P(Head) = 0.5
P(Head) = 0.5 P(HH)=0.5x0.5=0.25

P(Tail) = 0.5 P(HT)=0.5x0.5=0.25

P(Tail) = 0.5
P(Head) = 0.5 P(TH)=0.5x0.5=0.25

P(Tail) = 0.5 P(TT)=0.5x0.5=0.25

Fig. 3.7  Fare coin toss

outcomes from throwing two dice, which we call the outcome space. There are 
six ways of getting the outcome ‘7’—(1,6), (2,5), (3,4), (4,3), (5,2), (6,1). So, the 
probability of the event (of getting ‘7’) is 6/36 = 0.167. See Fig. 3.6a, and b.

3.3.1  Rules of Probability

For any event, A, the probability of occurrence of A, is represented as P(A). 
P(A) is called marginal or unconditional probability (Figs. 3.7 and 3.8).

Axioms of probability
1. For any event A, P(A) >  = 0.
2. The probability of sample space P(S) = 1.
3. For disjoint events (mutually exclusive events) P (A U B) = P (A) + P(B).

Addition rule for probability

P (A U B) = P (A)+ P(B)− P (A and B).



91

(a) Rolling a Fair Die (b) Rolling Two Fair Dice

Fig. 3.8  Rolling fair die(s)

3.3 Probability

3.3.2  Independent Events

If the outcome of an event does not affect the outcome of another, then the 
events are called independent. There are three types of probabilities under statisti-
cal independence:

A. Marginal Probability
 Marginal probability is the simple probability of occurrence of an event. In a 

fair coin toss, marginal probability P(Head) = 0.5, and P(Tail) = 0.5.

B. Joint Probabilitys
 The joint probability of two independent events occurring together (or in succes-

sion) is the product of their marginal probabilities.P(AB) = P(A) × P(B)

 In the case of a fair coin toss, the probability of 
two heads appearing on two successive tosses:

 Similarly, P(HHH) = P(H) × P(H) x P(H) = 0.5 × 0.5 × 0.5 = 0.125.

C. Conditional Probability of Independent Events
 For statistically independent events, the conditional probability of event B 

given that event A has occurred is the probability of event B
 P(A|B) = P(A),
 where A and B are independent events
 Similarly, P(B|A) = P(B)

3.3.3  Statistical Dependence and Bayes Theorem

If an event's outcome is affected by another's outcome, then the events are 
dependent. In this section, we discuss the rules for (a) Conditional Probability 

P(H1 H2) = P(H1) × P(H2) = 0.5× 0.5 = 0.25(see Figure 3.7)



92 3 Introduction to Probability and Statistics

for Statistically Dependent Events and (b) Joint Probability for Statistically 
Dependent Events.

If an event's outcome is affected by another's outcome, then the events are 
dependent. Assume that event B is statistically dependent on event A.

Let P(A) be the probability that event A will happen.
Let P(B|A) be the probability of event B to happen, given that event A has 

happened.
Let P(BA) be the joint probability for statistically dependent events B and A 

happening together or in succession.

Note that, P(B|A) and P(A|B) represent different conditional probabilities.
For any two events A and B, where P(A) <  > 0, Bayes Theorem states that 

‘The posterior probability equals the prior probability times the likelihood ratio’ 
(Hutten, 1958).

3.4  Discrete Probability Distributions

A random experiment is a phenomenon whose outcome cannot be predicted 
with certainty, such as flipping a coin or rolling a die. Assume a random experi-
ment. Random experiments may have numerical outputs, such as the lifetime of 
an electric bulb. In the absence of numerical outputs, they can be assumed. A var-
iable is random if it takes on different values due to the outcomes of a random 

(3.1)

The joint probability of events B and A happening together or in succession

=Probability of event B given that event A has happened ∗
The probability that event A will happen.

P(BA) = P(B|A) × P(A)

(3.2)

The conditional probability for the statistically dependent event B

to happen given that event A has happened

= The joint probability of events B and A happening together or in succession /

The probability that event A will happen

Posterior(B|A) = P(BA)/P(A)

Posteriori probability P(B|A) =

prior-probability P(B)
likelihood P(A|B)
evidence P(A)

(3.3)P(B|A) = P(B)
P(A|B)
P(A)



933.4 Discrete Probability Distributions

experiment. The values of a random variable are the numerical values correspond-
ing to each possible outcome of the random experiment.

The discrete random variable takes a limited number of values, which can be 
enumerated. A continuous random variable can take any value within a given 
range, which cannot be enumerated, e.g., f(x) = e−x. If the probability distribution 
of the discrete random variable is called PMF (probability mass function). The 
probability distribution is called PDF (probability density function) for a contin-
uous random variable. This section (Sect. 3.4) will discuss the discrete probability 
distribution functions—Binomial distribution and Poisson distribution.

Tutorial 3.4.1 Random Numbers

import numpy as np
from numpy import random

random.randint(10)    # 5: a random integer between 0 and 1
random.randint(1,6,3) # [2,3,4] an array of 3 random integers between 
1...6

2D array of 2 rows by 3 columns, of random integers between 1 and 6
random.randint(1,6,size=(2,3)) 

array([[4, 5, 2],
[3, 1, 5]])

rf = random.random(100)  #returns 100 random floats between 0 and 1
np.round(rf,2)           #rounded to 2 decimals

[0.98, 0.82, 0.38, 0.06, 0.23, 0.67,...,0.66, 0.67, 0.33,0.23]

Array of 2 rows x 3 columns, filled with random floats between 0 and 1
random.rand(2,3)         

array([[0.38999024, 0.30542701, 0.1800722 ],
[0.1303612 , 0.94954896, 0.40937711]])

Tutorial 3.4.2 Rolling a Die

See Figure 3-8(a): Rolling a Fair Die
d1 = random.randint(1,7,5000)  #random values 1,2,3,4,5,6
plt.hist(d1)
plt.xlabel('outcome', fontsize=16)
plt.ylabel('frequency', fontsize=16)
plt.xlim(0, 7)
plt.show()

Tutorial 3.4.3 Rolling Two Die

See Figure 3-8(b): Rolling Two Fair Dice
d1 = random.randint(1,7,1000) 
d2 = random.randint(1,7,1000) 
plt.hist(d1+d2)
plt.xlabel('outcome', fontsize=16)
plt.ylabel('frequency', fontsize=16)
plt.xlim(1, 13)
plt.show()



94 3 Introduction to Probability and Statistics

Tutorial 3.4.4 Binomial Distribution 

A researcher conducts a study on the fair coin toss. Four sets of experi-
ments are designed. Each set of experiments has 10 experiments each. Each 
experiment consists of 10 Bernoulli trials. The tosses per trial varies 
across the experiment sets—10, 20, 50, 100. Every trial throws an outcome, 
e.g., the count of 'heads'. The binominal probability distribution for the 
above experimental design, assuming a fair coin toss is illustrated below.

import numpy as np 
from numpy import random
import seaborn as sb
import matplotlib.pyplot as plt
nSuccess   = 10

nTossesPerExpt = [10,20,50,100]   # number of tosses in an experiment
pSuccess = 0.5  # probability of getting a head in Fair coin toss

mean value of success (count of heads in an experiment) 
= np = nTossesPerExpt x pSuccess 

ls=['dashdot','dashed','dotted','solid']
i=0
for nTosses in nTossesPerExpt:
    x = random.binomial(size=nSuccess, n=nTosses, p=pSuccess)
    print(x)
    sb.kdeplot(x,linestyle=ls[i])
    i+=1
plt.title ('smoothened binomial p=0.5, n=10..100', fontsize=16)
plt.xlabel('Number of Successes' ,fontsize=16)
plt.ylabel('Probability Density', fontsize=16)
plt.xticks( list(range(0,80,10)) ,fontsize=16)
plt.yticks( list(np.arange(0,0.35,0.1)), fontsize=16)
plt.legend( nTossesPerExpt, fontsize=16)

See Figure 3-9(a): Binomial and Poisson Distributions; Table 3.3

Tutorial 3.4.5 Poisson Distribution 

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sb
import numpy as np
leg  = ['binomial', 'poisson' ]
plt.title('binomial with large n, small p ~ poisson', fontsize=16)
b = random.binomial(n = 100, p = 0.05, size = 50)
sb.kdeplot(b,linestyle='solid')
p = random.poisson(lam = 5, size = 50) 



95

Table 3.2  Calculation of expected value E(X)

Event-1
(5 heads)

Event-2
(4 heads)

Event-3
(6 heads)

Event-4
(7 heads)

Event-5
(8 heads)

Sum

Number of heads (xi) = 5 4 6 7 8 54

Observed frequency 2 4 1 2 1 10

Observed P (X = xi) = 
Observed frequency/
Number of trials (N = 10)

0.2 0.4 0.1 0.2 0.1 1

xi * Observed P (X = xi) 1 1.6 0.6 1.4 0.8 5.4

3.4 Discrete Probability Distributions

sb.kdeplot(p,linestyle='dashed')
plt.xlabel('Number of Successes (np)', fontsize=16)
plt.ylabel('Probability Density',      fontsize=16)
plt.legend(leg, loc='upper right',     fontsize=16)
plt.ylim(0,0.21)
plt.yticks(np.arange(0,0.21,0.05))

See Figure 3-9 (b): Binomial and Poisson Distributions

3.4.1  Mean and Standard Deviation of a Discrete Random 
Variable

The mean of a discrete random variable is denoted by the expected value E(X), 
which can be expressed as

E(X) approximates to μ, the population mean, for large N.
Assume that 10 experiments were conducted. In each experiment, a fair coin is 

tossed ten times (N = 10). The counts of heads observed from the experiments are 
{5 5 4 6 7 4 7 4 8 4}. From the above set of outcomes, we observe five events—
five heads occurred twice, four heads four times, six heads once, seven heads 
twice, and eight heads once. This is shown in Table 3.2. From that, E(X) is calcu-
lated to be 5.4. Given the total number of trials N = 10, the probability of success 
was observed to be (5.4/10 = ) 0.54. This is close to the expected probability of 
headcount in a fair coin toss, P = 0.5. As stated earlier, E(X) approximates to μ, 
the population mean, for large N. This implies that, given the number of trials is 
large, and the coin toss is fair, the probability of success is expected to be near to 
0.5 (Table 3.3).

E(X) =
1

N

N∑

i=1

xiP(X = xi)



96 3 Introduction to Probability and Statistics

Table 3.3  The count of heads in a fair coin toss

Experiment design Number of coin 
tosses per experiment

Number of 
experiments

Headcount observed in each 
experiment

1 10 10 [5 5 4 6 7 4 7 4 8 4]

2 20 10 [10 10 10 11 10 12 9 12 10 7]

3 50 10 [28 24 26 24 20 31 26 30 27 24]

4 100 10 [57 46 50 47 43 56 54 51 40 48]

3.4.2  Binomial Distribution

The binomial distribution is the basis for the popular binomial test of statisti-
cal significance. The binomial distribution describes discrete data, resulting from 
Bernoulli trials. Assume that we conduct several Bernoulli trials. Note that.

1. Each trial has only two possible outcomes: (e.g., head or tail for each coin toss; 
yes or no; success or failure).

2. The probability of the outcome of any trial remains fixed over time.
3. The trials are statistically independent. That is, one toss's outcome does not 

affect another toss's outcome.

Let p be the probability of success in one trial. The probability of r successes 
in n trials, denoted by P (X = r), is known as a binomial distribution. The 
probability mass function of binomial distribution can be expressed as.

The parameters of the binomial distribution are:

• Mean of a: μ = n.p
• Standard deviation of a binomial distribution: σ = √npq.

The binomial distribution is the discrete probability distribution of the num-
ber of successes in a sequence of ‘n’ independent trials, where each trial gives a 
dichotomous outcome (success/failure). The binomial distribution is usually used 
to model the number of successes in a sample of size n drawn with replacement 
from a population of size N.

The binomial distribution is symmetrical when the probability of success p is 
close to 0.5. When p moves towards 1 or 0, skewness increases. For a binomial 
distribution, with large n (>20), n.p >  = 5, and n.q >  = 5, normal distribution can 
be used as an approximation. However, the binomial distribution becomes increas-
ingly skewed as p moves towards 0 or 1. When p is close to 1 or 0, the distribution 
becomes highly skewed and more asymmetrical.

P (X = r) = nCrp
r(1− p)(n−r)



97

(a) Binomial Dist. Coin Toss, BD, p=0.5, n = 10..100 (b) Binomial and Poisson, p=0.05, n=100

Fig. 3.9  Binomial and Poisson Distributions

3.4 Discrete Probability Distributions

3.4.3  Poisson Distribution

Poisson distribution is a discrete probability distribution that expresses the 
probability of a given number of events occurring in a fixed interval of time and/
or space if these events occur with a known average rate and are independent of 
the time since the last event (Levin, 2011), (Zaki & Meira, 2014). The probability 
mass function (PMF) of the Poisson distribution can be expressed as

where

P(X = k) is the probability of observing k events in the interval,
λ is the average rate of events in the interval,
e ~ 2.718.

The Poisson distribution is also used for events in other intervals, such as dis-
tance, area, or volume. It has some properties that make it applicable to many 
situations that require making inferences by taking samples. The parameters of 
Poisson distribution are:

λ: The mean number of occurrences of an event per interval of time.
σ: The standard deviation = √ λ.

Note: When n is large and p is very small, the Poisson distribution can be used 
to approximate the binomial distribution. For example, n >  = 20, and p <  = 0.05. 
In this case, we can substitute the Poisson distribution's mean (λ) with the bino-
mial distribution's mean (np). See Fig. 3.9(b)/Tutorial 3.4.5. Poisson distribution is 
right-skewed.

P(X = k) = e−�
�
k/k!



98 3 Introduction to Probability and Statistics

3.5  Continuous Probability Distributions

As discussed earlier, a probability distribution function can be discrete, or con-
tinuous. In this section, we will discuss three continuous-valued probability distri-
bution functions—normal, t, and chi-square (Levin, 2011), (Zaki & Meira, 2014).

3.5.1  Normal Distribution

The normal (or Gaussian) distribution is a continuous probability distribution 
with a bell-shaped probability density function, known as the Gaussian function or 
the bell curve's informally. Carl Friedrich Gauss (1777–1855) was one of the ear-
liest researchers to explore normal distribution. He applied it to analyze errors in 
astronomical observations and advanced the least squares approximation method.

The mean of a normal probability distribution is denoted by μ and its stand-
ard deviation by σ. A continuous random variable x with a normal distribution is 
called a normal random variable. The normal distribution comes close to fitting the 
observed frequency distributions of many phenomena (Central limit theorem).

The probability density function (PDF) of a normal distribution is expressed as

The cumulative distribution function (CDF) of a normal distribution is 
expressed as

The standard normal distribution represents a specific instance of the normal 
distribution, where the mean (μ) is zero and the standard deviation (σ) is one. 
The random variable associated with the standard normal distribution is typically 
denoted as ‘z.’ The unit of measurement for this distribution is expressed in terms 
of z-scores (refer to Fig. 3.10). Tables illustrating standard normal probability dis-
tribution computations are widely accessible, providing probabilities for various 
ranges (areas under any normal curve). Utilizing these tables, we can ascertain 
the probability of a randomly distributed variable falling within specific distances 
from the mean, defined in terms of standard deviations.

Key characteristics of a normal probability distribution (normal curve) include 
being unimodal with a single peak, exhibiting a bell-shaped symmetrical curve, 
having the mean located at the center, and featuring overlapping mean, median, 
and mode. Additionally, the two tails of the normal curve extend indefinitely with-
out touching the horizontal axis.

f(x) =
1

√
2π

e−(1/2)x2

F ( x < z ) =
1

√
2π

ˆ z

−∞
e−(1/2)x2dx



99

Fig. 3.11  Measures of Shape – Negative Skew, Symmetric, and Positive Skew

The area under the 
curve:-

– σ > x < + σ is 68%

–2σ > x < +2σ is 95%

–3σ > x < +3σ is 97%

Fig. 3.10  The probability density function (PDF) of a standard normal distribution

3.5 Continuous Probability Distributions

Parameters of Normal Distribution

• The mean of the normal distribution is (μ) and the standard deviation (σ).
• A std normal distribution has μ = 0 and σ = 1.
• Standardizing a normal random variable: Z = (X - μ)/σ.

Measures of Shape
In statistical theory, location and variability are referred to as a distribution's 

first and second moments. The third and fourth moments are called skewness 
and kurtosis. Skewness is the degree of distortion from a normal distribution. 
Skewness is the third moment of the standardized score of X (Fernandez-Granda, 
2017).

A distribution can be positively skewed, negatively skewed, or non-skewed 
based on whether Skew(X) is positive, negative, or 0. See Fig. 3.11. A commonly 
followed thumb rule states that skewness within ± 2.58 is acceptable for a normal 
curve.

Skewness (X) = E

[(
(X − µ)

σ

)3
]



100

Fig. 3.12  Kurtosis

3 Introduction to Probability and Statistics

Kurtosis indicates the relative peaked-ness or flatness of the frequency distribu-
tion. Kurtosis is the fourth moment of the standardized score of X. (See Fig. 3.12)

The above computation for kurtosis always gives a positive value. The kurtosis of 
a standard normal distribution is 3. We use the equation below to compare other 
curves with the standard normal.

This equation returns a negative, zero, or positive value as seen in Fig. 3.12.
Positive kurtosis implies that the curve is more peaked than a normal distribu-

tion. A negative kurtosis implies that the curve is flatter. See Fig. 3.12. A com-
monly followed thumb rule states that kurtosis within ±1.96 is acceptable for a 
standard normal curve. Kurtosis indicates the outliers’ presence (and influence) in 
a distribution.

3.5.2  T-Distribution

The ‘t-distribution’ or Student’s t-distribution was developed by William Sealy 
Gosset (1876–1937). As a brewer at Guinness in Dublin, Ireland, he developed 
a method for quality control based on small samples. Since Guinness prohibited 

Kurtosis (X) = E

[(
(X − µ)

σ

)4
]

Kurtosis (X)− Kurtosis (standard normal) = E

[(
(X − µ)

σ

)4
]
− 3



101

Fig. 3.13  t-Distribution 
Versus Standard Normal 
Distribution

3.5 Continuous Probability Distributions

its employees from publishing their research findings, Gosset published his work 
under the pseudonym ‘Student’.

The t-distribution curve is a bell-shaped symmetric curve. As the sample size, 
n increases, the t-distribution approaches the standard normal distribution. See 
Fig. 3.13. The t-distribution has only one parameter—the number of degrees of 
freedom (df).

The mean of the t-distribution is 0, and its standard deviation is √ [df / (df − 2)].

3.5.3  Chi-Squared Distribution

A Chi-squared (χ2) distribution is a right-skewed continuous probability distri-
bution. Let ‘n’ be a positive integer. The probability density function of a random 
variable x, having a Chi-squared distribution, with ‘df’ degrees of freedom, can be 
expressed as.

(In the equation above, τ is the gamma function).
As the number of degrees of freedom increases, the Chi-square distribution 

becomes approximately equal to a normal distribution, as shown in Fig. 3.14. (We 
will discuss the degree of freedom of Chi-square distribution in Chapter 4). The 
curve starts with a zero on the left side and extends to infinity on the right. The 
total area under a Chi-square curve equals 1.

df = n− 1, for a t-distribution, where n is the sample size.

f (x, df ) = x

(
df

2
−1

)

e−
x
2 2

df

2 τ

(
df

2

)
, if x > 0

if x < = 0; f (x, df) = 0.

http://dx.doi.org/10.1007/978-981-99-0353-5_4


102 3 Introduction to Probability and Statistics

Fig. 3.14  Chi-Square 
Distribution

Tutorial 3.5.1 t Distribution 

import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt

n = 10000
xTicks  =np.arange(-5,6,1)
yTicks  =list(np.arange(0,0.5,0.1))
df = [3,5,7]
df_leg = ['df=2','df=4','df=8','normal']
ls=['dashdot','dashed','dotted','solid']
l=0
for i in df:
    x = np.random.standard_t(i, size=n)
    sb.kdeplot(x,linestyle=ls[l])
    l+=1
x = np.random.normal(0, 1, size=n)
sb.kdeplot(x, color='black')
plt.legend(df_leg, fontsize=16)
plt.xlim(-5,5)
plt.xticks(xTicks, fontsize=16)
plt.yticks(yTicks, fontsize=16)
plt.xlabel('-∞ <-- t-Scores (σ) --> +∞', fontsize=16)
plt.ylabel('probability density', fontsize=16)
plt.title ('students t-Distribution for various df', fontsize=16)
plt.grid()

See Figure 3-13: t-Distribution Versus Standard Normal Distribution



1033.6 Sampling Distributions and Central Limit Theorem

Tutorial 3.5.2 Chi-Square Distribution 

from scipy import stats
import numpy as np
import matplotlib.pyplot as plt

linestyles =  [':', '--', '-.', '-']
yTicks  =list(np.arange(0,0.19,0.03))
x = np.linspace(0, 99, 100)
deg_of_freedom = [5, 10, 15, 30]
i = 0
for df in deg_of_freedom:
    plt.plot(x, stats.chi2.pdf(x, df), linestyles[i])
    i = i+1
plt.xlim(0, 60)
plt.ylim(0, 0.18)
plt.xlabel('x')
plt.title('Chi-Square Distribution for various df', fontsize=16)
plt.legend(deg_of_freedom)
plt.xlabel('   Chi-Sqaure Scores (σ)    --> +∞', fontsize=16)
plt.yticks(yTicks, fontsize=16)
plt.ylabel('probability density', fontsize=16)
plt.show()

See Figure 3-14 Chi-Square Distribution

3.6  Sampling Distributions and Central Limit Theorem

Understanding a phenomenon can be achieved by collecting information by 
examining every individual within the entire group (population) related to the 
issue. This approach is commonly known as complete enumeration or a cen-
sus. However, in numerous instances, assessing or measuring every item within 
the population is neither feasible nor practical, especially for cost-value analysis. 
Consequently, information is derived from a subset of the population, termed a 
sample. This method is termed ‘sampling.’

3.6.1  Sampling Methods

Methods used for sampling are categorized as (a) random sampling or probabil-
istic sampling or (b) non-random sampling or judgment sampling. See Fig. 3.15.

Let us explore various random sampling methods. Simple random sampling 
ensures that each potential sample has an equal likelihood of being chosen, and 



104 3 Introduction to Probability and Statistics

Sa
m

pl
in

g 
M

et
ho

ds
Random 
Sampling

Simple Random Sampling

Systema�c Sampling

Stra�fied Sampling

Cluster Sampling

Non-Random
Sampling

Convenience Sampling

Judgment Sampling

Quota Sampling

Shopping Mall Intercept Sampling

Snowball Sampling

Fig. 3.15  Sampling methods

every item in the population has an equal opportunity to be part of the sample. In 
systematic sampling, starting from a random point, elements are selected at regu-
lar intervals, measured in time, order, or space. In stratified sampling, the popula-
tion is categorized into relatively homogeneous groups (strata), and then elements 
are randomly selected from each stratum. Cluster sampling involves dividing 
the population into groups or clusters and selecting a random sample from these 
clusters. These individual clusters serve as representative subsets of the entire 
population.

3.6.2  The Central Limit Theorem

The probability distribution of all possible values of the sample statistic is known 
as the sampling distribution. For a normal population, the distribution of sample 
means follows a normal distribution with mean (μ) and standard error (σ/√n).

Central Limit Theorem (CLT) states that, as the sample size increases, the sam-
pling distributions closely approximate the normal distribution and become clus-
tered around the population mean, for all distributions of independent, identically 
distributed variables that have a finite variance (Frost, n.d.; Frost 2023; Levin, 
2011; Zaki & Meira, 2014).

It may be also noted that, for a large sample, the sampling distribution of sam-
ple proportion will follow a normal distribution with mean ‘p’ and standard error 
‘√[pq/n]’.

Figure 3.16 shows the result of an experiment in measuring chicken weight 
(in grams) from a large poultry. We take 10 samples of chicken and calculate 



105

Fig. 3.16  Distribution of sample means, for different sample sizes

3.6 Sampling Distributions and Central Limit Theorem

the means (10 means). We repeat the above experiment for sample sizes of 10, 
50, 500,1000, and 5000 chickens per sample. We observe that with larger sam-
ple sizes, the distribution of sample means becomes more normal and more tightly 
clustered.

The standard deviation of the distribution of a sample statistic is known as the 
standard error of the statistic. Standard error decreases with an increase in sample 
size. Determination of appropriate sample size depends upon two criteria:

Degree of precision or extent of the permissible error (e).
Degree of confidence placed with the sample results (1 − α).

Tutorial 3.6.1 Central Limit Theorem Exercise 

import numpy as np
import matplotlib.pyplot as plt

mu, sigma, nPoultry = 100, 20, 50
samples = [50,100,1000,5000]

import seaborn as sns
mu, sigma, nPoultry = 100, 20, 50
ls=['dashdot','dashed','dotted','solid']
l=0
for nChicks in samples:
    S = 100
    for i in range(1, nPoultry):
        s = np.random.normal(mu, sigma, nChicks)
        S = np.append(S,s.mean())



106 3 Introduction to Probability and Statistics

Fig. 3.17  Point estimate, and 
level of significance (α)

    plt.xlim(95,105)
    sns.kdeplot(S,linestyle=ls[l])
    l+=1
plt.legend(samples,loc='best',prop={"size":10}) #font size 10 
t = 'distribution of the means of samples, for different sample sizes'
plt.title(t, fontweight=10)
plt.show()
See Figure 3-16: Distribution of Sample Means

3.7  Point and Interval Estimates

A statistic (e.g., mean) computed from a data sample gives a point estimate of 
the population from which the sample is drawn. However, the computed mean will 
vary from sample to sample. So the exact value of the population mean remains 
elusive. However, the population means lie within a certain interval, with a cer-
tain confidence. The researcher chooses the confidence level a priori based on his 
requirements. The confidence level can be expressed as

where α, the level of significance, is used in our computations.
The commonly used confidence levels are 90%, 95%, and 99%. The corre-

sponding to α are 0.10, 0.05, and 0.01.
Confidence Interval (CI) = Point estimate ± Margin of Error.
The margin of error comprises two entities—critical value and measure of the 

variability of the sampling distribution. The critical value is a number that corre-
sponds to α, the level of significance, set a priori. It is denoted as CV.

See Fig. 3.17. The solid line is the point estimate. The critical values are 
marked as dash-dot lines. In a two-sided test, the interval estimate of the popula-
tion parameter will lie between the critical values. The dotted lines show the prob-
able error in the estimate, for the given significance level.

Confidence level = 100(1 − α)%



107

Table 3.4  Sample statistics and population parameters

Measurement Symbol for sample statistic Symbol for population parameter statistic

Mean x μ

Proportion p π

Variance s2 σ2

Standard deviation s σ

Size n N

Questions

Note that, for a normal population, the distribution of sample means fol-
lows normal probability distribution with mean (μ) and standard error (σ/√n). 
Therefore, the standard error (σ/√n) measures the variability of a normal popula-
tion. The following equation can express the margin of error:

The sample statistic can be used to infer an interval estimate of the population. 
For example, if x̂  is the sample mean, we may infer the population mean µ with 
a margin of error, based on the required significance level. More specifically, the 
population mean µ is expected to fall in the interval bounded by (x̂  - margin of 
error) and (x̂  + margin of error), for the given significance level. This is the basis 
of inferential statistics.

Table 3.4 shows a list of statistics and their symbols in the sample space and the 
population. In subsequent chapters, we will explore how to infer the population 
parameters from the sample statistics.

Summary

The chapter covers the broad spectrum of statistical methods, dividing them 
into descriptive and inferential statistics. Descriptive statistics involves repre-
senting data through various means such as tables, graphs, and charts, employing 
techniques like box plots, histograms, and summary statistics. Measures like arith-
metic mean, geometric mean, median, mode, and standard deviation are discussed 
with their characteristics and applications.

Inferential statistics focuses on estimating population parameters from sam-
ple data. Probability concepts include events, sample spaces, and probabilities 
expressed as fractions or decimals between zero and one. The distinction between 
discrete and continuous random variables is made, and probability distribution 
functions, binomial distribution, Poisson distribution, and normal distribution are 
explored. Skewness and kurtosis are explained as measures of distribution shape.

The t-distribution, chi-square distribution, and their parameters and applications 
are outlined. Sampling methods, both random (probabilistic) and non-random 
(judgment) sampling, are introduced. The concept of the sampling distribution, 
influenced by the Central Limit Theorem (CLT), is discussed. The CLT states that 

The margin of error = zα/2 ∗ σ/
√
n



108 3 Introduction to Probability and Statistics

sampling distributions approximate the normal distribution as the sample size 
increases. The chapter also emphasizes point estimates, confidence intervals, and 
the variation of computed means across different samples for statistical inference.

Questions

Comprehensions

 1. Write a short note on the main categories of summary statistics falling under 
descriptive statistics.

 2. Describe skewness and kurtosis.
 3. Describe the following, with proper association—A random experiment, 

Outcome, Sample space, and Event.
 4. Define probability.
 5. State the axioms of probability.
 6. With respect to independent events, define the following: -

 a. Joint probability
 b. Conditional probability

 7. With respect to mutually dependent events, define the following: -

a. Conditional probability for statistically dependent events.
b. Jsoint probability for statistically dependent events.

 8. State and explain Bayes’ theorem.
 9. Define and explain a random variable with examples.
 10. Define the expected value of a discrete random variable.
 11. Define binomial distribution.
 12. Define Poisson distribution.
 13. Define normal distribution.
 14. Write a note on standard normal distribution.
 15. Write a note on random sampling methods.
 16. State and explain the Central Limit Theorem.
 17. Define an interval estimate for the mean, assuming a normal distribution.

Analysis and Application

 18. What are the critical differences between descriptive and inferential statistics, 
and when is each type of statistic proper?

 19. Compare and contrast the characteristics and use cases of the mean, median, 
and mode as measures of central tendency in statistics.

 20. Explain the difference between a discrete random variable and a continuous 
random variable. Provide examples of each.



109Questions

 21. Explain how the shape of a binomial distribution changes as n increases while 
keeping p constant. Given a binomial distribution with n = 30 and p = 0.2, 
cssalculate the mean and standard deviation of the distribution. Interpret the 
results in the context of a real-world scenario.

 22. Discuss the relationship between a Poisson distribution's mean (λ) and the 
standard deviation (σ). Using the Poisson distribution, calculate the probabil-
ity of observing three or fewer events in an interval with an average rate (λ) of 
5. Interpret the result.

 23. Given two independent events A and B with P(A) = 0.4 and P(B) = 0.3, calcu-
late the joint probability P(A and B) and the conditional probabilities P(A|B) 
and P(B|A).

 24. Explain the concept of statistical dependence and how it impacts the calcula-
tion of conditional probabilities. Provide an example where one event's out-
comes affect another's outcomes.

 25. Compare and contrast simple random sampling and stratified sampling. In 
what research scenarios would you choose one over the other, and why?

 26. Explain the advantages and disadvantages of cluster sampling. Provide exam-
ples of situations where cluster sampling is appropriate.

 27. Compare the skewness and kurtosis values for a normally distributed dataset 
and a non-normally distributed dataset. Discuss the implications for statistical 
analysis.

 28. Describe the Central Limit Theorem and its role in making statistical infer-
ences about populations. How does the sample size affect the applicability of 
the Central Limit Theorem?

 29. Analyze the differences between a t-distribution and a standard normal distri-
bution. When would you use one over the other in statistical analysis?

 30. You have a dataset of student exam scores. How can you apply descriptive 
statistics to summarize the performance of the students?

 31. In a call center, the average number of calls received in an hour is 15. 
Calculate the probability of receiving exactly 10 calls in the next hour using 
the Poisson distribution.

 32. Discuss situations where the Poisson distribution is suitable for modeling 
events, such as accident rates or website traffic.

 33. Compare and contrast the characteristics of the binomial and Poisson distribu-
tions. Under what conditions would you choose one over the other for mode-
ling a specific scenario?

 34. You are conducting a survey to estimate the average income of a population. 
How would you use a point estimate and a confidence interval to report your 
findings?

 35. Explain how knowledge of the normal distribution can be applied to quality 
control in a production environment.

 36. In a manufacturing process, product weights are normally distributed with a 
mean of 500 g and a standard deviation of 10 g. Calculate the probability that 
a randomly selected product weighs more than 515 g.



110 3 Introduction to Probability and Statistics

 37. A small sample of 12 students is selected to assess their performance on using 
t-test. Calculate the 95% confidence interval for the population mean test 
score, given a sample mean of 85 and a sample standard deviation of 5.

 38. In a medical study, a researcher tests the hypothesis that two treatments have 
different success rates. Explain how the chi-square distribution can be used to 
analyze the data and draw conclusions about treatment effectiveness.

 39. Describe a situation in which the chi-square test for independence would be 
applied and its significance.

Exercises

The questions in this section are based on two datasets shown below. Refer to 
Chapter 1 for the data description.

• Penguins (seaborn dataset)
• ChickWeight (statsmodels dataset - https://www.statsmodels.org/stable/index.

html)

Exercise 3.1 Box Plot
Use the dataset penguins. Remove rows with missing values. Generate boxplots:-

 (a) mass by species and sex
 (b) mass by species and island

Exercise 3.2 Histogram
Use the dataset penguins. Remove rows with missing values. Generate 
histograms:-

 (a) mass by species
 (b) mass by island

Exercise 3.3 Scatter Plot
Use the dataset penguins. Remove rows with missing values. Generate scatter plot:

 (a) bill length by flipper length by species

Exercise 3.4 Strip Plot

Use the dataset penguins. Remove rows with missing values.

 (a) Body mass by island by sex

Exercise 3.5 Random Number Functions

 (a) Generate a 3*2 matrix of random integers.
 (b) Generate a 3*2 matrix of random floats.

http://dx.doi.org/10.1007/978-981-99-0353-5_1
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html


111References

Exercise 3.6 Probability Distribution of Admitted COVID Patients
Plot the probability distribution of COVID patients to be admitted, given the rate 
of COVID positive with co-morbidity is 0.01 over all those who are identified as 
COVID positive. Assume 300 patients arrive a day and 100 are found COVID pos-
itive. Use binomial and Poisson. What distribution would you prefer and why?

References

Fernandez-Granda C (2017) Probability and statistics for data science. In Probability and 
Statistics for Data Science

Frost J (n.d.) Statistics by Jim. https://Statisticsbyjim.Com/Basics/Central-Limit-Theorem/
Frost, J. (2023). Statistics by Jim. https://statisticsbyjim.com/basics/central-limit-theorem/
Hutten EH (1958) Probability and induction. The British Journal for the Philosophy of Science, 

9(33). https://www.journals.uchicago.edu/doi/https://doi.org/10.1093/bjps/IX.33.43
Levin R (2011) Statistics for management. In The Statistician (Issue 1). https://doi.

org/10.2307/2348398
Malhotra NK (2020) Marketing research an applied prientation seventh edition. Pearson 

Education
Zaki MJ, Meira W (2014) Data mining and analysis: fundamental concepts and algorithms. 

Cambridge University Press

https://Statisticsbyjim.Com/Basics/Central-Limit-Theorem/
https://statisticsbyjim.com/basics/central-limit-theorem/
http://dx.doi.org/10.1093/bjps/IX.33.43
http://dx.doi.org/10.2307/2348398
http://dx.doi.org/10.2307/2348398


113

Learning Objectives

• Understand the fundamentals of hypothesis testing.
• Demonstrate t-test for comparison of means.
• Demonstrate the ANOVA test.
• Demonstrate the chi-square test.

Overview

In this chapter, we will discuss hypothesis testing fundamentals and explore 
t-test, ANOVA, and chi-square tests.

Definitions

ANCOVA: If the set of independent variables consists of categorical and metric 
variables, the technique is called the analysis of covariance (ANCOVA).
ANOVA (one-way analysis of variance): The one-way analysis of variance aims to 
compare the means of two or more independent groups to determine whether the 
associated population means are significantly different.
Chi-square test: The chi-square test of independence, also known as the chi-
square test of association, is a nonparametric statistical test. Its purpose is to assess 
whether there is a significant association between categorical variables.

Chapter 4
Hypothesis Testing

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_4

 Supplementary Information The online version contains supplementary material available at 
https://doi.org/10.1007/978-981-99-0353-5_4.

https://doi.org/10.1007/978-981-99-0353-5_4#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_4&domain=pdf


114 4 Hypothesis Testing

Hypothesis testing: In hypothesis testing, we compare the statistics from a sam-
ple data distribution with the parameters of a model (t-distribution, chi-square dis-
tribution, etc.). If the sample is consistent with the model, the null hypothesis is 
not rejected; otherwise, the null hypothesis is rejected in favor of the alternative 
hypothesis.
Independent samples t-test: The independent samples t-test compares the means of 
two independent groups in a sample to determine whether the associated popula-
tion means are significantly different.
Nonparametric tests: Nonparametric tests are used when the variables are categori-
cal (nominal or ordinal), e.g., chi-square test.
One-sample t-test: The one-sample t-test examines whether the mean of a popula-
tion is statistically different from a hypothesized value.
Paired samples t-test: Paired samples t-test compares the means of two measure-
ments taken from the same subject. For example, the awareness of a product and 
purchase intention.
Parametric tests: Parametric tests are used for numeric variables (ratio scaled or 
interval scaled), e.g., t-test.
Test statistic: A test statistic is a number calculated from the data sample.
T-test: For comparison of means, when the sample size is small or the population 
standard deviation is not known, we will prefer the t-test over the z-test.
Type I error: Two types of errors can occur in hypothesis testing. A type I error 
occurs when the null hypothesis is rejected when it is true.
Type II error: Type II error occurs if the null hypothesis is rejected when we 
should not. Type I error is considered more severe than type II.

4.1  The Fundamentals of Hypothesis Testing

Jerzy Neyman and Egon Pearson formulated the theory of hypothesis testing. 
They hypothesized that regardless of the results of an experiment on data sam-
ples, a researcher could never be certain whether it holds good for the population. 
However, based on two parameters—α (significance level) and β ([1 − β] is called 
the power of the test), a researcher could make certain conclusions on the prob-
ability of success of the experiment. Probability, or p-value as it is commonly 
called, is attributed to Ronald Fisher, considered the father of modern statistics and 
experimental design.

We saw in the previous chapter that a statistic (e.g., mean) calculated from a 
random sample of data does not give the exact estimate of the population parame-
ter, as the statistic will vary from sample to sample. However, we can hypothesize 
that the population parameter will lie within a certain interval, with a certain con-
fidence. How do we infer that our hypothesis is true or false? One of the ways to 
achieve this is hypothesis testing.



1154.1 The Fundamentals of Hypothesis Testing

It may be noted that there are two major categories of tests. Parametric tests are 
used for numeric variables (ratio scaled or interval scaled). Nonparametric tests 
are used when the variables are categorical (nominal or ordinal). T-test is a para-
metric test; chi-square test is a nonparametric test.

4.1.1  Hypothesis Testing Procedure

In hypothesis testing (Duchesnay 2021; Levin 1984; Navidi n.d.; Rice 2007), 
we compare the statistics from a sample data distribution with the parameters of 
a model (t-distribution, chi-square distribution, etc.). If the sample is consistent 
with the model, the null hypothesis is not rejected; otherwise, the null hypothesis 
is rejected in favor of the alternative hypothesis. A null hypothesis is a statement 
of the status quo, one of no difference or no effect. The alternative hypothesis is 
the opposite of the null hypothesis—it hypothesizes some difference or effect. The 
general procedure for hypothesis testing is given below (Malhotra 2020).

1. Define the problem.
2. Formulate the null (H0) and the alternative (Ha) hypotheses.
3. Select the appropriate test.
4. Select the significance level (α) for testing H0. Typically, α is set to 0.05.
5. Execute the statistical test based on the data sample.
 Typically, this step is executed by a statistical software package. It computes 

the test statistic using the data sample and finds out the p-value associated with 
the test statistic.

6. Analyze the test results. We can use any one of the following methods for this

• If the value of the computed statistic falls within the critical region, reject H0
 Or
• If the p-value <  = α, reject H0. Otherwise, do not reject H0.

7. Inference: Interpret the results and state our conclusion.

4.1.2  Hypothesis Formulation

A hypothesis test starts with formulating the null hypothesis and the alternative 
hypothesis. Some examples concerning hypothesis testing of the population mean 
(μ) are given below.

One-Sample t-test

The null hypothesis for a hypothesis concerning a population mean (μ) is 
expressed as

H0:μ = μ0,where μ0 is some number.



116 4 Hypothesis Testing

Table 4.1  Type I and type II error

Concept Example

H0 true H0 is false H0: accused is 
innocent

H0: accused is 
guilty

Do not Reject 
H0

Yes Type II error Acquit Yes Type II error

Reject H0
Type I error Correct Punish Type I error Correct

The formulation of the alternative hypothesis depends on the problem at hand. 
There are three ways to formulate an alternative hypothesis.

Ha:μ ≠ μ0(1) Two-sided test.
Ha:μ < μ0(2) Left-tailed test.
Ha:μ > μ0(3) Right-tailed test.

Multiple Samples Test
H0:μ1 = μ2 = … = μk,
Where
μ1, μ2 … μk are the mean of different populations,
Ha:at least one mean is μi is different from other means.

4.1.3  Type I Error, Type II Error, and the Level 
of Significance

As mentioned in the introductory section, regardless of the results of an exper-
iment on data samples, a researcher could never be certain whether it holds good 
for the population. Two types of errors can occur: type I error and type II error 
(Biau et al. 2010). A type I error occurs when the null hypothesis is rejected when 
it is true. Type II error occurs if we reject the null hypothesis when we should not. 
Type I error is considered more severe than type II. Drawing a courtroom analogy, 
punishing an innocent person is a type I error, and acquitting the guilty is a type II 
error. See Table 4.1.

The probability of type I error is α. It is also called the significance level. A 
researcher frames the hypothesis in a manner to have the null hypothesis rejected 
(when it is false). The probability of type II error is β. The power of the test is 
indicated by (1—β). The significance level alpha (α) and power of the test 
(1—β) are inversely related. If the power is close to 1, the hypothesis test is good 
at detecting a false null hypothesis. Ideally, α and β should both be small. The 
researcher can set the value of α, but β cannot be set.

See Fig. 4.1. The vertical line shows the critical value (CV). In this figure, CV 
is set to z-score = 1.96, or α = 0.05 (equivalent to a confidence level of 95% for a 
right-sided test). Here, α is the region to the right side of the critical value in the 



117

Fig. 4.1  H0, Ha, critical 
value, level of significance, 
and power

4.3 Comparison of Means—Independent Samples t-Test

null hypothesis (Ho) curve, and β is the region that falls to the left of the critical 
value in the alternate hypothesis (Ha) curve. It may be observed that, if the CV line 
moves to the right, the significance level (α) increases, and power (1—β) decreases.

4.2  Comparison of Means Overview

In the subsequent sections, we will do tutorials on hypothesis testing regarding 
the comparison of means. When the sample size is small or the population stand-
ard deviation is unknown, we prefer t-test (assuming t-distribution) over z-test 
(assuming normal distribution).

We may be concerned with a single population parameter or wish to compare 
multiple populations. In the case of multiple populations, they may be independ-
ent or paired. Independent samples are drawn randomly from different popula-
tions—e.g., different groups of respondents such as males and females. Samples 
are said to be paired if different features are observed off the same sample—e.g., 
height and weight of the respondents.

Our tutorials will be based on the t-test and chi-square test. We will target a 
level of significance (α) of 0.05. The tutorials covered are shown in Figs. 4.2.

4.3  Comparison of Means—Independent Samples t-Test

The independent samples t-test compares the means of two independent groups 
in a sample to determine whether the associated population means are significantly 
different. Two variables are used in this:

• The dependent variable or test variable (body mass of penguins) is expected to 
be a numeric variable (integer or float).



118 4 Hypothesis Testing

Hypothesis 
Tests

Parametric Tests

One Sample

Two Samples

Independent 
Samples

Paired Samples

Morethan 2 
Samples

Anova

Ancova (not 
included)Non Parametric 

Tests (Non 
Numeric Data)

Chi-Sqaure Test

Fig. 4.2  Hypothesis testing—comparison of means—tutorial coverage

• The independent variable or grouping variable (penguin species—‘Adelie’, 
‘Chinstrap’, and ‘Gentoo’) is expected to be a categorical variable (nominal or 
ordinal).

Variances in the two groups are assumed to be approximately equal. When the 
assumption of homogeneity of variances does not hold, a variation called the 
Welch t-test can be used. Outliers affect the estimates (see Sect. 2.8.2).

The Hypothesis on Two Independence Samples t-test

The hypothesis can be formulated in two ways. The first formulation is easy to 
understand. However, it is the second formulation that is generally tested

(1) H0: µ1 = µ2 (the two population means are equal).
 Ha: µ1 ≠ µ2 (the two population means are not equal).

(2) H0: µ1 - µ2 = 0 (the difference between the two population means = 0).
 Ha: µ1 - µ2 ≠ 0 (the difference between the two population means ≠ 0).

The Hypothesis on the Homogeneity of Variances

The independent samples t-test relies on the assumption of homogeneity of 
variance—i.e., both groups have the same variance. There are many tests for the 
homogeneity of variance (Bartlett’s test, Levine’s test, etc.). The hypotheses for 
homogeneity of variance are given below:

 (a) H0: σ12 - σ22 = 0 (the population variances of groups 1 and 2 are equal).
 (b) Ha: σ12 - σ22 ≠ 0 (the population variances of groups 1 and 2 are not 

equal).



1194.3 Comparison of Means—Independent Samples t-Test

The t-Test Formula, Equal Variances Are Assumed

When two independent samples are assumed to be drawn from populations with 
identical variances (σ12 = σ22), the t-statistic can be expressed as shown below 
(Malhotra 2020). The degree of freedom is (n1 + n2 −2) when equal variance is 
assumed.

where

x1, x2 Are the means of sample-1 and sample-2,
n1, n2 are the sizes of sample-1 and sample-2,
s1, s2 are the standard deviation of sample-1 and sample-2,
spis the pooled standard deviation, expressed as follows:

The t-Test Formula, Equal Variances not Assumed

We can pool the sample variances (sp) assuming equal population variances. 
Otherwise, we cannot pool the sample variances. When the two independent sam-
ples are assumed to be drawn from populations with unequal variances (σ12 ≠ σ22). 
The t-statistic is computed as shown below.

When equal variance is not assumed, the degree of freedom is the weighted har-
monic mean, the weights being the sample size n1, n2. It is computed as follows:

t =
x1 − x2

sp
√
1/n1+1/n2

Sp =

√

[n1 − 1]s21 + (n2 − 1)s22

n1 + n2 − 2

t =
x1 − x2

√

s21/n1+s22/n2

df =

(

s21
n1
+ s22

n2

)2

1
n1−1

(

s21
n1

)2

+ 1
n2−1

(

s22
n2

)2



120 4 Hypothesis Testing

σ

α

α

α

Fig. 4.3  Schematic diagram for two independent samples t-test

Two Independent Samples t-test Example

Penguins Data Set Description

Data about 342 penguins from three islands, three species
RangeIndex: 344 entries, 0 to 343

 #   Column             Non-Null Count  Dtype  
 0   species            344 non-null    ['Adelie', 'Chinstrap', 'Gentoo'] 
 1   island             344 non-null    ['Biscoe','Dream','Torgersen'] 
 2   bill_length_mm     342 non-null    float64
 3   bill_depth_mm      342 non-null    float64
 4   flipper_length_mm   342 non-null    float64
 5   body_mass_g        342 non-null    float64
 6   sex                333 non-null    ['Female', 'Male']

Refer to the penguin dataset. We would like to know whether the body mass dif-
fers across penguin species.

Answer:

We will follow the schematic diagram for the t-test in Fig. 4.3. When the sample 
size is small or the population standard deviation (σ) is unknown, we prefer the 
t-test (z-test, otherwise). This tutorial will use a t-test since the population parame-
ter (σ) is unknown. We will set the significance level α to 0.05.

We first need to get descriptive data statistics—See Tutorial Sects. 4.1, Fig. 4.4, 
and Penguin Dataset Description. We will follow the detailed steps for hypothesis 
testing shown below. Steps 5, 6, and 7 are explained as comments along with the 
program code.

1. Define the problem.
 We have data regarding penguins. There are three Penguin Species. We would 

like to know whether the body mass differs across penguin species.
2. Formulate the null (H0) and the alternative (Ha) hypotheses.
 H01: μ1 = μ2 ;Ha1: μ1 ≠ μ2(Comparing Adelie, Chinstrap).
 H02: μ1 = μ3 ;Ha2: μ1 ≠ μ3(Comparing Adelie, Gentoo).



121

(a) Body Mass by Species (b) Body Mass by Island

Fig. 4.4  Multiple box plots—body mass by species by Island

4.3 Comparison of Means—Independent Samples t-Test

 H03: μ2 = μ3 ;Ha3: μ2 ≠ μ3(Comparing Chinstrap, and Gentoo).
3. Select the appropriate test.
 We need to compare the means of body mass of penguin populations of three 

species (three independent samples).
 So, we select independent samples t-test.
4. Check for homogeneity of variances.
 The computational formulae for the t-test depend on whether the variance 

of the populations is the same or different. There are many tests for compar-
ing variances. Bartlett’s test is used when we are certain the underlying 
population has a normal distribution. Levene’s test is used for non-normal 
distributions.

 The null hypothesis for the test is that the variances are equal for all samples.
 H0: σ1

2 = σ2
2 = … = σk

2.
 The alternate hypothesis is that the variances are not equal for one or more 

pairs.
 We will undertake Bartlett’s test at a significance level (α) of 0.05.
 (If the p-value <  = α, reject H0. Otherwise, do not reject H0).
5. Select the significance level (α) for the t-test.
 α = 0.05.
6. Do the statistical test, setting variances are equal = True or False.
7. Analyze the test results.
 If the p-value < = α, reject H0. Otherwise, do not reject H0.
8. Inference: Interpret the results and state our conclusion.

Tutorial 4.3   Two Independence Samples t-test

import pandas as pd
import seaborn as sb
from scipy import stats



122 4 Hypothesis Testing

Tutorial 4.3.1 Data Setup; Descriptive statistics

d=sb.load_dataset('penguins')
d.info()
d.columns

['species', 'island', 
 'bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
 'body_mass_g', 'sex']
  species = ['Adelie', 'Chinstrap', 'Gentoo']
  island  = ['Biscoe','Dream','Torgersen']
d.dropna(inplace=True)  # dropping rows having any cells with null value
d.shape
sb.set(font_scale=1.5)
sb.boxplot(x='species',y='body_mass_g',data=d)
sb.boxplot(x='species',y='body_mass_g',hue='island',data=d)

See Figure 4-4: Multiple Box Plots

Tutorial 4.3.2 Bartlet's test - checking the equality of variances

s_Ad=d[d['species']=='Adelie']     # species_Adelie
s_Ch=d[d['species']=='Chinstrap']  # species_Chinstrap
s_Ge=d[d['species']=='Gentoo']     # species_Gentoo

Bartlett-test: to check the equality of variances, when we are not sure 
whether the distributions are normal
H0: variances of the body_mass of samples are equal
Ha: variances of the body_mass of samples are NOT equal

bts, p = stats.bartlett(s_Ad.body_mass_g,s_Ch.body_mass_g)
p 

p = 0.097; p > 0.05; failed to reject H0
variances of the body_mass of samples _Ad, _Ch are equal 

bts, p = stats.bartlett(s_Ad.body_mass_g,s_Ge.body_mass_g)
p 

p = 0.307; p > 0.05; failed to reject H0
variances of the body_mass of samples _Ad, _Ge are equal 

bts, p = stats.bartlett(s_Ch.body_mass_g,s_Ge.body_mass_g)
p

p = 0.017; p < 0.05; H0 is rejected 
variances of the body_mass of samples _Ch, _Ge  are NOT equal

Tutorial 4.3.3 Independent Samples t-test -2 tailed – variance equal 

Null hypothesis H0: Mean of the body_mass of samples s1, s2 are equal
Alternate hyp. Ha: Mean of the body_mass of samples s1, s2 are NOT equal

ti_Ad_Ch, p = stats.ttest_ind(s_Ad.body_mass_g,s_Ch.body_mass_g,
equal_var = True)
p 



1234.4 One Sample T-Test

p = 0.674; p > 0.05; Failed to reject the null hypothesis
Mean of the body_mass of samples _Ad, and _Ch are equal
The body mass does not differ across the species Adelie and Chinstrap

ti_Ad_Ge, p = stats.ttest_ind(s_Ad.body_mass_g,s_Ge.body_mass_g,
equal_var = True)
p 

p = 0.000; p < 0.05; The null hypothesis is rejected
Mean of the body_mass of samples _Ad, and _Ch are equal
The body mass of the species Adelie and Gentoo differ

Tutorial 4.3.4 Independent samples t-test – 2 tailed – variance not equal 

Null hypothesis H0: Mean of the body_mass of samples s1, s2 are equal
Alternate hyp. Ha: Mean of the body_mass of samples s1, s2 are NOT equal

ti_Ch_Ge, p = stats.ttest_ind(s_Ch.body_mass_g,s_Ge.body_mass_g,
equal_var = False)
round(p,3) 
p

p ~ 0.000. That is p < 0.05; The null hypothesis is rejected.
Mean of the body_mass of samples s_Ch, s_Ge are NOT equal.
Therefore, the body mass of the species Gentoo and Chinstrap differ

Inference: -
1)  The body mass of the species Adelie and Chinstrap do NOT differ
2)  The body mass of the species Adelie and Gentoo differ
3)  The body mass of the species Gentoo and Chinstrap differ

4.4  One Sample T-Test

The one-sample t-test examines whether the mean of a population is statisti-
cally different from a hypothesized value. The test variable (e.g., body mass of 
penguins) is expected to be a numeric variable (integer or float). Homogeneity 
of variances is assumed (i.e., variances of the sample data and population are the 
same). Outliers affect the estimates.

The test statistic for a one-sample t-test is computed as follows:

where
x is the sample mean,
μ0 is the test value.
sx is the estimated standard error of the mean, computed as

t =
x− µ0

S−x

sx =
s
√
n



124 4 Hypothesis Testing

Fig. 4.5  Hypothesis testing: 
two-sided t-test

s = sample standard deviation,
n is the sample size.

One-sample test for the population mean (μ) takes one of the three forms listed 
below.

(1) Hypothesis: Population Mean is Equal to the Test Value (μ = μ0)

H01: μ = μ0; (Ha1: the population mean is equal to the given number μ0).
Ha1: μ ≠ μ0(Ha1: the population mean is not equal to the given number μ0).
The null hypothesis expects the population mean to fall between μ − α/2 and 

μ + α /2. If the computed statistic falls within t-statistic (t) for the given degree of 
freedom t—α/2 and t + α/2, the null hypothesis cannot be rejected.

This is diagrammatically shown in Fig. 4.5. Here α is the significance level, 
usually set to 0.05; μ is the population mean; μ0 is the test value. The area 
bounded by the red lines indicates the non-rejection region. The area to the left of 
the red line at (μ − α/2) and the area to the right of the red line at (μ + α/2) are the 
rejection regions. The null hypothesis is rejected if the value of the t-statistic com-
puted from the dataset is beyond the critical value for the given degree of freedom. 
Note that, in the case of t-tests, the degree of freedom is sample size—1, (i.e.,  
n − 1).

(2) Hypothesis: Population Mean is Greater Than the Test Value (μ > μ0)

H02: μ= μ0; (H02: the population mean is equal to the given number μ0).
Ha2: μ > μ0(Ha2: the population mean is greater than the given number μ0).
This is diagrammatically shown in Fig. 4.6a. Here α is the significance level, 

usually set to 0.05; μ is the population mean; μ0 is some number. The null hypoth-
esis is rejected if the t-statistic computed from the dataset is less than the critical 
value for the given degree of freedom.



125

μμ μμ μμ μμ

Fig. 4.6  Hypothesis testing: one-sided t-test

4.4 One Sample T-Test

(3) Hypothesis: Population Mean is Greater Than the Test Value (μ < μ0)

H03: μ = μ0; (H02: the population mean is equal to the given number μ0).
Ha3: μ > μ0(Ha2: the population mean is less than the given number μ0).
This is diagrammatically shown in Fig. 4.6. Here α is the significance level, 

usually set to 0.05; μ is the population mean; μ0 is some number. If the value of 
the t-statistic computed from the dataset is greater than the critical value for the 
given degree of freedom, the null hypothesis is rejected.

One-Sample t-test Example

Refer to the penguin dataset. Do the following tests:

• Explore whether the body mass of the Adelie species of penguins is greater 
than 3.6 kg.

• Explore whether the body mass of the Adelie species of penguins is less than 
3.6 kg.

• Give an estimate of the body mass of the Adelie species of penguins.

Answer:

We will follow the method illustrated in ‘Sect. 4.3’ to compare means. Look at the 
schematic diagram for the t-test in Figs. 4.3. Since the population standard devia-
tion (σ) is unknown, we prefer the t-test, for a significance level of α = 0.05.



126 4 Hypothesis Testing

Tutorial 4.4   One-Sample t-test

Tutorial 4.4.1 Data Setup

import seaborn as sb                   # for loading the iris dataset
import matplotlib.pyplot as plt        # for graphics
from scipy import stats
import numpy as np

d  = sb.load_dataset('penguins')
d.dropna(inplace=True)
s_Ad=d[d['species']=='Adelie']     # species_Adelie
s_Ch=d[d['species']=='Chinstrap']  # species_Chinstrap
s_Ge=d[d['species']=='Gentoo']     # species_Gentoo

See  Figure 4-4, for the box plots on body mass by species

Tutorial 4.4.2 One Sample t-test: Is bodymass mean > 3600

Null hypothesis Ho: mean of penguin bodymass = 3600
Alt. hypothesis Ha: mean of penguin bodymass > 3600
Note the parameter alternative (Ha) ='greater'

tscore, pvalue = stats.ttest_1samp(s_Ad.body_mass_g, 
        popmean = 3600, alternative='greater')

pvalue = 0029; p < 0.05; The null hypothesis is rejected
Therefore, Mean is > 3600

Tutorial 4.4.3 One Sample t-test: Is bodymass mean < 3800

Null hypothesis Ho: mean of penguin bodymass = 3800
Alt. hypothesis Ha: mean of penguin bodymass < 3800
Note the parameter alternative (Ha) ='less'

tscore, pvalue = stats.ttest_1samp(s_Ad.body_mass_g, 
        popmean = 3800, alternative='less')

pvalue = 0.007; p < 0.05; The null hypothesis is rejected
Therefore, Mean is < 3800

Tutorial 4.4.4 Cross Verification of the one-tailed t-tests

According to central limit theorem, the population mean is expected to lie 
between sample mean +/- std. deviation / sqrt(n), where n is the sample size

import math 
mu = np.round(s_Ad.body_mass_g.mean(),2)  # 3706.16
s = s_Ad.body_mass_g.std()   # 458.62
n = len(s_Ad.body_mass_g)    # 146
sigma = s/math.sqrt(n)
sigma = np.round(sigma,2)
print('estimate of population mean: ', mu,  '+/-',sigma)



1274.5 Comparison of Means—Paired Samples

estimate of population mean: 3706.16 +/- 37.96

Inferences: -
1. Mean is > 3600
2. Mean is < 3800
3. The Interval Estimate of the Mean is 3706.16 +/- 37.96

4.5  Comparison of Means—Paired Samples

This test compares the means of two measurements taken from the same sub-
ject. Some applications of paired measurements are:

• The awareness of a product and purchase intention.
• Loyalty to a brand and customer satisfaction.
• The yield before and after treatment (at two different points in time).
• The health parameters before and after medical treatment (at two different 

points in time).

The paired samples t-test aims to ascertain if statistical evidence indicates that 
the mean value of the differences between paired observations is significantly dis-
tinct from zero. The data consists of two continuous numeric variables (integer or 
float). We may use the Wilcoxon Signed-Ranks Test to compare paired means of 
non-normal distributions. Like other t-tests, outliers affect the estimates of paired 
t-test as well.

The test statistic for a one-sample t-test is computed as follows:

where
xdiff is the mean of the difference between the paired observations,

t = Xdiff

sx

sx is the estimated standard error of the mean given by

Sdiff is the standard deviation of the difference between the paired observations,
n is the sample size.

Hypothesis Formulation

The hypothesis can be formulated in two ways. The first formulation is easy to 
understand. However, it is the second formulation that is actually tested. This can 
be visualized as in Fig. 4.6.

t =
xdiff

S−x

sx =
sdiff√
n



128 4 Hypothesis Testing

 (1) H0: µ1 = µ2 (the two population means are equal).
 Ha: µ1 ≠ µ2 (the two population means are not equal).
 (2) H0: µ1 - µ2 = 0 (the difference between the two population means = 0).
 Ha: µ1 - µ2 ≠ 0 (the difference between the two population means ≠ 0).

Paired Samples t-test Example

A retail store manager surveyed 30 customers in preparation for upcoming sea-
sonal sales. Four characteristics—purchase intention, product awareness, brand 
awareness, and brand loyalty—were measured on an interval scale of {0…7}. 
Assume a significance level of 0.05. Explore the characteristics that influence a 
purchase decision.

Tutorial 4.5 Paired Samples t-test

from scipy import stats
import numpy  as np

purchase_intent=[5,6,5,5,2,4,4,4,5,6,5,4,2,5,6,3,6,3,5,5,2,5,5,5,5,5,5,5,5,5]
product_aware=[5,6,5,5,5,3,5,5,5,2,6,4,4,5,6,3,6,6,5,5,5,4,5,5,5,5,4,5,5,6]
brand_aware=[5,6,5,5,5,4,5,5,5,6,6,6,5,6,6,6,6,5,5,5,4,5,5,4,5,5,5,5,3,6]
brand_loyal=[5,6,5,5,5,4,6,5,6,5,6,6,5,5,6,6,6,5,5,5,5,5,5,4,5,5,5,6,5,5]

H0: means of brand loyalty and purchase intention are equal
Ha: means of brand loyalty and purchase intention are NOT equal

tps, p = stats.ttest_rel(brand_loyal,purchase_intent)
p # 0.004

p-value is less than 0.05; H0 is rejected
Therefore, brand loyalty and purchase intention are NOT equal

H0: means of brand awareness and purchase intention are equal
Ha: means of brand awareness and purchase intention are NOT equal

tps, p = stats.ttest_rel(brand_aware, purchase_intent)
p # 0.012

p-value is less than 0.05; H0 is rejected
Therefore, brand awareness and purchase intention are NOT equal

H0: means of product awareness and purchase intention are equal
Ha: means of product awareness and purchase intention are NOT equal

tps, p = stats.ttest_rel(product_aware, purchase_intent)
p # 0.284

p-value is greater than 0.05; We fail to reject H0
product awareness and purchase intention are equal



1294.6 One-Way Anova

Inferences: -
1. Brand loyalty does not influence purchase intention.
2. Brand awareness does not influence purchase intention.
3. Product awareness influences purchase intention
Recommendation: -
Undertake promotional activity to convert brand loyalty and / or brand aware-
ness to purchase intention.

4.6  One-Way Anova

The objective of the one-way analysis of variance is to compare the means 
of two or more independent groups to determine whether the associated popula-
tion means are significantly different. The dependent variable to be analyzed is 
expected to be numeric (e.g., body mass of penguins). The independent variable 
is expected to be categorical (e.g., penguin species). The independent variable 
divides the sample into two or more mutually exclusive factor levels or groups. 
The variances exhibited by the different groups are assumed to be approximately 
equal. Outliers affect the estimate.

We may use the Kruskal–Wallis test if the normality, homogeneity of variances, 
or the assumption regarding outliers are not met. One-way analysis of variance 
involves only one categorical variable or a single factor. If two or more factors are 
involved, the analysis is termed ‘n-way analysis of variance’. If the set of inde-
pendent variables consists of both categorical and metric variables, the technique 
is called the analysis of covariance (ANCOVA). In this case, the categorical inde-
pendent variables are still considered factors, whereas the metric-independent vari-
ables are referred to as covariates.

The hypotheses concerning one-way ANOVA can be expressed as follows:
H0:µ1 = µ2 = µ3 = ... = µk (‘all the population means are equal’).
Ha: at least one of the k population means (µi) is not equal to the others.
The one-way ANOVA uses an F-statistic that evaluates whether the group 

means differ significantly. F-statistic can be expressed as (Malhotra 2020):

where

SSR = the regression sum of squares, with k-1 degrees of freedom,
SE = the error sum of squares, with n-k-1 degrees of freedom,
k is the number of groups (factor levels of the categorical variable),
n = sample size.

F =
SSR/(k− 1)

SSE/(n− k − 1)



130 4 Hypothesis Testing

Fig. 4.7  Chicken weight 
by diet

One Way Anova Example

The ‘ChickWeight’ dataset contains data on the body mass of chicken from day 
1 to day 21. They were divided into four groups and given four different ‘diets’. 
Explore the influence of ‘diet’ on ‘chicken weight’ See Fig. 4.7.

Tutorial 4.6   Anova

Tutorial 4.6.1 Data Setup

import pandas as pd
import seaborn as sb
import numpy as np
import scipy.stats as ss
import matplotlib.pyplot as plt

import statsmodels.api as sm  
d =sm.datasets.get_rdataset("ChickWeight").data
d.columns
d.info()

RangeIndex: 578 entries, 0 to 577
Data columns (total 4 columns):
    #   Column  Non-Null Count  Dtype
---  ------  --------------  -----
 0   weight  578 non-null    int64
 1   Time    578 non-null    int64
 2   Chick   578 non-null    int64
 3   Diet    578 non-null    int64

sb.boxplot(y='weight', x='Diet', data=d)
plt.xlabel('Diet Category', fontsize=16)
plt.ylabel('Weight', fontsize=16)
plt.title('Chicken Weight on Four Different Diet', fontsize=16)



1314.6 One-Way Anova

See Figure 4-7: Chicken Weight by Diet

Tutorial 4.6.2 One Way Anova / F test

c1=d[d.Diet== 1].weight
c2=d[d.Diet== 2].weight
c3=d[d.Diet== 3].weight
c4=d[d.Diet== 4].weight

f-test to check whether the mean of all the distributions are equal 
Ho: c1mean = c2mean = c3mean = c4 mean
Ha: the mean of at least one of the groups is different from others

f, p = ss.stats.f_oneway(c1, c2, c3, c4)
round(p,3) #0.000

p value < 0.05. null hypothesis is rejected
The mean of at least one of the group is different from the others

Tutorial 4.6.3 Bartlett's test

bartlett's test: to check the equality of variances, when no assumptions are 
made about the normality of the distributions

bts, p = ss.bartlett(c1, c2, c3, c4)
round(p,3) #p = 0.000; p < 0.05

The variance of at least one of the group is different from the others

Tutorial 4.6.4 Checking mean pairwise, assuming normal distribution

ss.stats.f_oneway(c1,c2)    #p <=0.05;   means are equal
ss.stats.f_oneway(c1,c3)    #p <=0.05;   means are equal 
ss.stats.f_oneway(c1,c4)    #p <=0.05;   means are equal
ss.stats.f_oneway(c2,c3)    #p <=0.05;   means are equal
ss.stats.f_oneway(c2,c4)    #p = 0.166;  means are NOT equal
ss.stats.f_oneway(c3,c4)    #p = 0.449;  means are NOT equal

Tutorial 4.6.5 Pairwise t-test

Based bartlett's test done above, equal variance is set to True or False 
Ho: mi = mj
Ha: mi != mj

ss.stats.ttest_ind(c1,c2,equal_var = True)  #(1) #p < 0.05
ss.stats.ttest_ind(c1,c3,equal_var = True)  #(2) #p < 0.05
ss.stats.ttest_ind(c1,c4,equal_var = True)  #(3) #p < 0.05
ss.stats.ttest_ind(c2,c3,equal_var = True)  #(4) #p < 0.05
ss.stats.ttest_ind(c2,c4,equal_var = False) #(5) #p = 0.166
ss.stats.ttest_ind(c3,c4,equal_var = False) #(6) #p = 0.448



132 4 Hypothesis Testing

Interpretation: -
The difference of means was statistically significant in four paired compari-
sons, as the p-value < 0.05 
However, there is insufficient evidence to conclude a significant difference 
between the means of the following two groups, as the p-value > 0.05.
C2-weight not = C4-weight 
C3-weight not = C4-weight 

For Sanity Check, let's print the mean weights of each group.
print(c1.mean(),c2.mean(),c3.mean(),c4.mean())

102.64   122.61   142.95   135.26

From statistical tests, and the mean value of weights, we observe that Diet 
4 is better than Diet 1. However, Diet 3 is better than Diet 1, Diet 2. So 
Diet 3 is recommended.

4.7  Chi-Square Test of Independence

The chi-square test of independence, or the chi-square test of association, is a 
nonparametric test. The objective of the test is to determine whether there is an 
association between categorical variables. This test uses a contingency table (a 
cross-tabulation or two-way table). The rows represent the categories of one varia-
ble, while the columns represent the categories of the other variable. Each variable 
must have two or more categories. Each cell in the table indicates the total count 
of cases for a particular combination of categories.

The hypothesis of the chi-square test can be expressed in two ways. They are 
both useful in different circumstances.

 (1) H0: ‘Variable 1 is independent of Variable 2’.
 Ha: ‘Variable 1 is dependent on Variable 2’.
 (2) H0: ‘Variable 1 is not associated with Variable 2’.
 Ha: ‘Variable 1 is associated with Variable 2’.

The test statistic for the chi-square test of independence is denoted χ2 and is 
computed as follows (Malhotra 2020). Please look at Table 4.2 and Tutorial 4.5 for 
a better understanding.

where

fo is the observed value,
fe is the expected value = nrnc/n,
nr is the sum of all the cells in the row,
nc is the sum of all the cells in the column,
n is the sample size.

χ
2 = �

(fo − fe)
2

fe



133

Table 4.2  Cross Tab—restaurant footfall by day-wise/gender-wise

fo (observed value)
cross tab: day/gender

fe (expected value) = nrnc/n (fo−fe)
2

fe

Male Female Total Male Female Total Male Female Total

Thu 30 32 62 Thu 40 22 62 Thu 2.50 4.55

Fri 10 9 19 Fri 12 7 19 Fri 0.33 0.57

Sat 59 28 87 Sat 56 31 87 Sat 0.16 0.29

Sun 58 18 76 Sun 49 27 76 Sun 1.65 3.00

157 87 244 157 87 244 χ2 = ∑(fo−fe)
2

fe
 = 13.05

Fig. 4.8  Critical value for a 
given df in chi-square test

4.7 Chi-Square Test of Independence

The computed χ2 value is compared to the critical value from the χ2 distribution 
table with degrees of freedom df = (R − 1)(C − 1) and the confidence level cho-
sen. We reject the null hypothesis if the computed χ2 value > the critical χ2 value 
(available from χ2 tables). The χ2 probability distribution of degree of freedom 10 
(18.307) is shown in Fig. 4.8. If the χ2 computed from the experimental data is 
greater than 18.307, we reject the null hypothesis with 95% confidence level.

Alternatively, we reject the null hypothesis if the p-value associated with the 
computed χ2 is < 0.05. The rejection implies a significant association, or depend-
ence, between the two categorical variables.

Example Refer to Table 4.2. A restaurant manager wants to know whether the 
footfall across the week differs by gender. Table 4.2 shows a cross-tabulation of 
restaurant footfall day-wise and gender-wise. For example, the first data cell in the 
first table has a value of 30, which shows that 30 males were present in the restau-
rant on Thursday. Let us apply the critical value method of hypothesis testing.

Interpretation and inference:

• df = (r-1) * (c-1) = 3 * 1 = 3
• Chi-Square Critical Value for (df = 3) is 7.8.
• Chi-Square Statistic Computed = 13.



134 4 Hypothesis Testing

• Since the computed Chi-Square Statistic (13) > Critical Value (7.81), the null 
hypothesis of independence is rejected.

• The distribution of Male footfall and Female footfall across the days is 
different.

Chi-Square Test Example

The ‘tips’ dataset contains data collected from a restaurant, over two and a half 
months. The variables include the day of service—Thursday to Sunday, the 
footfalls by gender, bill amount, tips, gender of the person paying the bill, etc. 
Investigate whether the footfall across the week differs by gender. Apply two 
methods for hypothesis testing (a) the p-value method and (b) the critical value 
method.

Tutorial 4.7   Chi-square test - restaurant tips - footfall

 Tutorial 4.7.1 Data Setup

from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sb
import pandas as pd

d=sb.load_dataset('tips')
d.info( )

RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
 #   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   total_bill  244 non-null    float64 
 1   tip         244 non-null    float64 
 2   sex         244 non-null    category
 3   smoker      244 non-null    category
 4   day         244 non-null    category
 5   time        244 non-null    category
 6   size        244 non-null    int64   
dtypes: category(4), float64(2), int64(1)

d.columns #'total_bill','tip','sex','smoker','day','time','size']
d.day.unique()   # ['Sun', 'Sat', 'Thur', 'Fri']
d.time.unique()  # ['Dinner', 'Lunch']
d.sex.unique()   # ['Female', 'Male']

Tutorial 4.7.2 Cross Tab of plot footfalls vs gender

ct = pd.crosstab(d.day, d.sex)
print(ct)



135

(a) Foo�all, Day / Gender Wise (b) Chi-Square Sta�s�c & Cri�cal Value

Fig. 4.9  Footfalls—associated chi-square statistic and critical value

4.7 Chi-Square Test of Independence

sex   Male  Female
day               
Thur    30      32
Fri     10       9
Sat     59      28
Sun     58      18
The table has 4 rows and 2 columns. 
The degree of freedom (df) = (r-1)x(c-1) = 3x1 = 3 

plt.rcParams.update({'font.size': 16})
plt.plot(ct.Male,linestyle='--')
plt.plot(ct.Female,linestyle='-')
plt.legend(['Male','Female'])

See Figure 4-9 (a): Footfalls - Associated Chi-Square Statistic

Tutorial 4.7.3 Chi-square test / p-Value method

Ho: footfall is not associated with gender
chi2, p, df, exp =  stats.chi2_contingency(ct)
print (chi2, df) 

chi square statistic = 13.22 at degree of freedom = 3
print (p)        # 0.004

Inference based on p-value:
Since p < 0.05, the null hypothesis of independence is rejected.
The footfall is associated with gender.
The footfalls of males and females differ across the days.

Tutorial 4.7.4 Chi-Square test / Critical Value Method

alpha = 0.05-> Confidence_Interval_Coefficient = 0.95
The degree of freedom df is computed above (df=3) 
Compute Critical Value

CV = stats.chi2.ppf(Confidence_Interval_Coefficient, df) # 7.814



136 4 Hypothesis Testing

Inference based on Critical Value: -
See Figure 4-9 (b): Footfalls - Associated Chi-Square Statistic
df = (r-1)*(c-1) = 3*1 =3
Chi-Square Critical Value for (df=3) is 7.81
Chi-Square Statistic Computed = 13.22
Since the computed Chi-Square Statistic (13.22) > Critical Value (7.81), the 
null hypothesis of independence is rejected. Therefore, we infer that the 
distribution of Male and Female footfall across the days differs.
The footfalls of males and females differ across the days. Male footfalls are 
higher than female footprints – Crosstab is shown below: -

Male  Female
Thur    30      32
Fri     10       9
Sat     59      28
Sun     58      18

Data Analytics in Action

Statistical Studies in Brewery and Agricultural Fields
Karl Pearson, William Sealy Gosset, and Ronald A Fisher are considered 
pioneers of modern statistics. Karl Pearson (1857–1936) founded the world's 
first statistics department at University College, London in 1911. His contri-
butions include the correlation coefficient, method of moments, chi-square 
distribution (in the year 1900), and principal component analysis. He con-
tributed significantly to the field of biometrics and meteorology.

William Sealy Gosset (1876–1937) was a brewer for Guinness Brewery 
in Dublin. He observed that the existing statistical techniques using large 
sample sizes were not useful for the small sample sizes he had to work with. 
This led to the development of t-test and t-distribution (in 1908). From 1906 
to 1907, Gosset was employed at Pearson's laboratory in London, where 
he focused on topics such as the Poisson limit to the binomial distribution, 
the sampling distribution of the mean, standard deviation, and correlation 
coefficient.

Ronald A Fisher (1890–1962) developed the ‘analysis of variance 
(ANOVA) method in 1918, which generalized the t-test for comparing more 
than two means. He developed the randomized experimental design for his 
work in the agricultural fields at Roth Amsted Research—the UK, from 
1919 to 1933. He introduced the well-known Iris flower dataset to exemplify 
discriminant analysis in 1936. Other major contributions from Fisher include 
works on the method of maximum likelihood, fiducial inference, the deriva-
tion of various sampling distributions, etc. Together with J. B. S. Haldane 
and Sewall Wright, Fisher is one of the three principal founders of popula-
tion genetics.



137Summary

Summary

Jerzy Neyman and Egon Pearson formulated the theory of hypothesis testing. 
They hypothesized that regardless of the results of an experiment on data sam-
ples, a researcher could never be certain whether it holds good for the population. 
However, based on two parameters, significance level and the power of the test, a 
researcher could make specific conclusions on the probability of the experiment's 
success. The probability value, commonly referred to as the p-value, is often asso-
ciated with Ronald Fisher, acknowledged as the pioneer of modern statistics and 
experimental design.

In hypothesis testing, we compare the statistics from a sample data distribution 
with the parameters of a model (t-distribution, chi-square distribution, etc.). If the 
sample is consistent with the model, the null hypothesis is not rejected; otherwise, 
the null hypothesis is rejected in favor of the alternative hypothesis. The criterion 
for rejecting the null hypothesis involves a test statistic. A test statistic is a number 
calculated from the data sample.

There are two major categories of tests. Parametric tests are used for numeric 
variables (ratio scaled or interval scaled). Nonparametric tests are used when 
the variables are categorical (nominal or ordinal). T-test is a parametric test, chi-
square test is a nonparametric test.

Two types of errors can occur in hypothesis testing. A type I error occurs when 
the null hypothesis is rejected when it is true. Type II error occurs by rejecting our 
null hypothesis when we should not. Type I error is considered more severe than 
type II. The probability of type I error is a. It is also called the significance level. 
The probability of type II error is ß. The power of the test is indicated by (1 – ß).

In comparing means, the t-test is preferred over the z-test when dealing with 
small sample sizes or unknown population standard deviations. The independent 
samples t-test assesses if the means of two independent groups in a sample are 
significantly different, assuming equal variances. When variances are not assumed 
to be equal, the Welch t-test is an alternative. Outliers can impact estimates. The 
one-sample t-test examines if the mean of a population differs from a hypothe-
sized value. The paired samples t-test compares the means of two measurements 
from the same subject, such as product awareness and purchase intention.

The one-way analysis of variance aims to compare the means of two or more 
independent groups to determine if associated population means differ signifi-
cantly. If assumptions like normality or homogeneity of variances are not met, the 
Kruskal–Wallis test may be used. One-way analysis of variance involves a single 
categorical variable, while multiple factors are considered in ‘n-way analysis of 
variance’. Analysis of covariance (ANCOVA) incorporates categorical and metric 
variables in the independent variables.

The chi-square test of independence, a nonparametric test, determines if there is an 
association between categorical variables using a contingency table. Rows represent 
categories for one variable, and columns represent categories for the other variable.



138 4 Hypothesis Testing

Questions

Comprehension:

1. Compare and contrast test statistics to population parameters.
2. Write a short note on the need for hypothesis testing.
3. Describe the key steps involved in the hypothesis testing procedure. How does 

the significance level (α) relate to hypothesis testing?
4. In the context of hypothesis formulation, what are the null and alterna-

tive hypotheses? Provide examples of null and alternative hypotheses for a 
one-sample t-test and a two-sample t-test.

5. What is the critical value, and how does it impact the outcome of a hypothesis 
test? How does it relate to the level of significance (α)?

6. When conducting a two-sample t-test, what are the assumptions about vari-
ances? How can you determine whether you should assume equal variances or 
not?

7. In what context is the t-test preferred over z-test?
8. Compare and contrast independent samples t-test with paired samples t-test.
9. In which context does the assumption of homogeneity of variance assume 

importance in the t-test?
10. State the hypothesis and explain the assumptions in the ANOVA test.
11. State the hypothesis and explain the assumptions in the chi-square test.
12. State the hypothesis and explain the assumptions in various categories of 

t-test.
Analysis:

13. What is the purpose of hypothesis testing, and how does it help researchers 
conclude population parameters based on sample data?

14. Explain the difference between parametric tests and nonparametric tests. 
When and why would you choose one over the other?

15. What are type I and type II errors in hypothesis testing? Why is it important to 
understand and control these errors in statistical analysis?

16. How does the significance level (α) relate to the power of a statistical test? 
Explain the trade-off between these two parameters.

Application:

17. Imagine you have collected data on the heights of two groups of peo-
ple: Group A and Group B. Formulate null and alternative hypotheses for a 
two-sample t-test to determine if there is a significant difference in the heights 
of these two groups.

18. You are conducting a study to compare the test scores of students who 
received tutoring (Group 1) and those who did not (Group 2). What type of 
t-test would you use, and why? Formulate the null and alternative hypotheses 
for this scenario.



139Exercises

19. Given a dataset with body mass measurements of penguins from different spe-
cies (Adelie, Chinstrap, Gentoo) explain how you would perform a two-sam-
ple t-test to determine if there are significant differences in body mass between 
these species.

20. Discuss a real-world scenario where controlling type I error is crucial. Provide 
an example of a study or experiment where such control is needed.

21. You are conducting a survey to test the effectiveness of a new advertising 
campaign on consumer purchase intentions. Which statistical test would you 
use, and how would you set the significance level? Formulate the null and 
alternative hypotheses for this test.

22. Consider a situation where you have data on the ages of customers who pur-
chased online versus those who made an in-store purchase. What statistical 
test would you use to compare the means of these two groups, and why?

23. When conducting a two-sample t-test, you find that the p-value is less than the 
chosen significance level (α). What conclusion can you draw from this result, 
and what implications does it have for your study or experiment?

24. Explain the concept of power in hypothesis testing and provide a real-world 
example where high statistical power is essential for drawing meaningful 
conclusions.

Exercises

The questions in this section are based on the datasets listed below:

1. Penguins (seaborn dataset—https://seaborn.pydata.org/).
2. Tips (seaborn dataset—https://seaborn.pydata.org/).
3. ChickWeight (https://www.statsmodels.org/stable/index.html).
4. Retail Store—Brand Loyalty (Data provided in this chapter).

Exercise 4.1 Independent Samples t-Test

This has reference to the penguin's dataset. Is the body mass of penguins different 
across islands—find out using independent samples t-test.

Exercise 4.2 One-Sample t-test and Interval Estimate

This has reference to the ChickWeight dataset.

1. Using independent samples t-test, determine whether the body mass of chicken 
having Diet 4 is expected to be greater than 100gm. Use the step-by-step proce-
dure for hypothesis testing.

2. Get an interval estimate of the body mass of chicken feeding Diet 4.

https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://www.statsmodels.org/stable/index.html


140 4 Hypothesis Testing

Exercise 4.3 Paired Samples t-Test
Consider the retail store case discussed in this section.

#

import pandas as pd

import seaborn as sb

from scipy import stats

#

# Tutorial 4.1.1 Descriptive statistics#

A retail store manager surveyed 30 customers in preparation for an upcoming 
seasonal sales. Four characteristics were measured on an interval scale of 0..7. 
Assume a significance level of 0.05. Identify the characteristics that influence 
brand loyalty using paired samples t-test.

Exercise 4.4 One-Way ANOVA

This has reference to the penguin's dataset. Investigate the following using one-
way ANOVA.

1. Is the body mass of penguins different across species?
2. Is the body mass of penguins different across islands?
3. Is the body mass of penguins different across genders?

Exercise 4.5 Chi-Square Test—Footfalls by Time

This has reference to the tips dataset. The dataset contains data collected from a 
restaurant over two and a half months. Refer to Tutorial 4.5 for details. Using the 
chi-square test, identify whether a significant difference exists in the footfalls dur-
ing lunch/dinner over the days in the week. Demonstrate both the p-value method 
and the critical value method.

Exercise 4.6 Chi-Square Test—Footfalls by Gender

This has reference to the tips dataset. The dataset contains data collected from a 
restaurant over two and a half months. Refer to Tutorial 4.5 for details. Using the 
chi-square test, identify whether a significant difference exists in the footfalls of 
male/female customers over the days in the week. Demonstrate both the p-value 
method and the critical value method.



141References

References

Biau DJ, Jolles BM, Porcher R (2010) P value and the theory of hypothesis testing: an expla-
nation for new researchers. Clin Orthop Relat Res 468(3). https://doi.org/10.1007/
s11999-009-1164-4

Duchesnay ETLFY (2021) Statistics and machine learning in Python: Release 0.5
Levin RI (1984) Statistics for management. Prentice Hall
Malhotra NK (2020) Marketing research an applied orientation, 7th edn. Pearson Education
Navidi W (n.d.) Statistics for engineers and scientists
Rice JA, RJA (2007) Mathematical statistics and data analysis. Thomson Brooks Cole

http://dx.doi.org/10.1007/s11999-009-1164-4
http://dx.doi.org/10.1007/s11999-009-1164-4


143

Learning Objectives

• Explain the concepts of correlation and regression with practical examples.
• Discuss the procedure for regression analysis.
• Understand the regression model.
• Illustrate data validation associated with regression analysis.
• Apply regression analysis to solve a business case.
• Demonstrate stepwise regression method.
• Demonstrate feature ranking and selection.
• Examine polynomial regression.

Overview

The chapter starts with a theoretical exposition of correlation and regression. 
A detailed discussion of the regression analysis procedure follows which involves 
10 steps, including the examination of the regression model, data validation asso-
ciated with regression analysis, visual inspections, stepwise regression, as well as 
feature ranking and selection.

The above steps are illustrated using a case study. Finally, we also discuss pol-
ynomial regression and demonstrate it through a Python application. It may be 
noted that regression is discussed further in Chap. 11—Machine Learning.

Chapter 5
Regression Analysis

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_5

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_5.

http://dx.doi.org/10.1007/978-981-99-0353-5_11
https://doi.org/10.1007/978-981-99-0353-5_5#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_5&domain=pdf


144 5 Regression Analysis

Definitions

Akaike information criterion (AIC): AIC indicates model fit. It is used for compar-
ing models. The lower the AIC, the better the model.
Autocorrelation: Autocorrelation is the similarity over a sequence of observations 
or observations in a time series. This may result in underestimates of the standard 
error, leading to a misjudgment of the significance of the predictors.
Coefficient of determination: The coefficient of determination R2 is the proportion 
of the explained variation to the total variation. R2 must be adjusted for the number 
of independent variables (k) and the sample size (n).
Correlation: Correlation measures the nature and strength of association between 
two variables.
Durbin-Watson test statistic: The Durbin-Watson test statistic measures autocorre-
lation. A value around ‘2’ is acceptable.
Feature Ranking: We may need to rank and select fewer variables based on criteria 
such as the partial regression coefficient or the p-value associated with the t statis-
tic. The features can be handpicked if there are only a few of them. However, we 
may need to automate the process if there are numerous features.
Homoscedasticity: Homoscedasticity assumes that the variance of the error term 
is constant. Homoscedasticity is an important assumption in many multivariate 
techniques.
Multicollinearity: Multicollinearity arises when intercorrelations among the pre-
dictors are very high.
Ordinary Least Squares (OLS): Among linear unbiased estimators, the ordinary 
least squares (OLS) estimator demonstrates the least sampling variance when the 
errors in the linear regression model are uncorrelated, possess equal variances, and 
have an expectation value of zero.
Part correlation: Part correlation measures the strength of the association of a sin-
gle independent variable with the dependent variable when the effect of the other 
independent variables in the regression model is removed.
Partial correlation coefficient: The partial correlation coefficient measures the 
strength of the association of a single independent variable with the dependent 
variable when the effects of the other independent variables in the model are held 
constant. It measures the incremental predictive effect of an independent variable.
Polynomial regression: If the relationship between the predictors and dependent 
variable is not linear, we may add additional ‘interaction’ terms to build an effec-
tive regression model. Though the underlying relationship is polynomial, it may be 
thus modeled as a linear model.
Regression analysis: Regression analysis examines associative relationships 
between a metric dependent variable (y) and one or more independent variables 
(X).
Stepwise regression: Stepwise regression is a method for discarding independ-
ent variables that are not significant. In the backward regression method, we start 
with all the independent variables in the model and remove the variables from the 
regression equation, one at a time. In the forward method, we add independent 



1455.1 Correlation

variables to the regression equation, one at a time. Multicollinearity is a major 
challenge in variable selection.
Variance Inflation Factors: Variance inflation factor (VIF) measures multicolline-
arity. VIF is directly related to the tolerance value (VIF = 1/Tolerance). A value 
around <5 is acceptable in social science research.

5.1  Correlation

Correlation measures the nature and strength of association between two var-
iables. Pearson correlation coefficient (or product-moment correlation), r, indi-
cates the linear association between two metrics (interval or ratio scaled) variables 
(Levin 2011; Zaki and Meira 2014).

Assume a sample of n observations of variables x and y. The correlation coeffi-
cient, r, is calculated as shown below.

where

The value of ‘r’ varies from −1 to +1. In social sciences, 0.3  |r| < 0.8 is con-
sidered moderate, and |r| > 0.8 good (Kendall rank correlation and Spearman rank 
correlation are nonparametric tests, for estimating the correlation of two variables 
that are ordinal or metric). In Fig. 5.1 the blue line shows a positive correlation 
between two variables—planning versus outcome; the yellow line shows a nega-
tive correlation between two variables—experience versus monitoring. 

Correlation between project planning and project outcome.
An example of the calculation of the Pearson correlation coefficient is shown in 

Table 5.1. The data consists of measurements of two attributes—project planning 
(P) and project outcome (O), from 15 software projects. A positive correlation of 
0.72 is observed between them. This implies that project planning positively influ-
ences the project outcome.

For calculating sample statistics such as the mean, the observed measure-
ments are summed up and the sum is divided by ‘n’, the sample size. We use the 
divider n − 1, rather than n to estimate the population mean. This is for adjusting 

r = σ(xy)/σ(x)σ(y),

σ(xy) =
∑n

i=1
(xi−xmean)(yi − ymean)/(n− 1) is the covariance of x and y

σ(x) =
√ n∑

i=1

(xi − xmean)
2/(n− 1) is the standard deviation of x

σ(y) =
√ n∑

i=1

(yi − ymean)
2/(n− 1) is the standard deviation of y



146 5 Regression Analysis

Fig. 5.1  Positive and negative correlations

Table 5.1  Correlation between project planning and project outcome

P O r(P,O) = r(O, P) = σ(P,O)/(σP * σO) 0.72

project_
plan

project_
out-
come

Pi − Pmean (Pi − Pmean)
2 Oi − Omean (Oi − Omean)

2 (Pi − Pmean) 
* 
(Oi − Omean)

5 3 1.53 2.35 −0.20 0.04 −0.31

2 2 −1.47 2.15 −1.20 1.44 1.76

4 5 0.53 0.28 1.80 3.24 0.96

4 3 0.53 0.28 −0.20 0.04 −0.11

3 2 −0.47 0.22 −1.20 1.44 0.56

5 6 1.53 2.35 2.80 7.84 4.29

2 1 −1.47 2.15 −2.20 4.84 3.23

2 2 −1.47 2.15 −1.20 1.44 1.76

4 5 0.53 0.28 1.80 3.24 0.96

2 2 −1.47 2.15 −1.20 1.44 1.76

4 3 0.53 0.28 −0.20 0.04 −0.11

4 4 0.53 0.28 0.80 0.64 0.43

4 3 0.53 0.28 −0.20 0.04 −0.11

4 3 0.53 0.28 −0.20 0.04 −0.11

3 4 −0.47 0.22 0.80 0.64 −0.37

Pmean = Omean = VarP = 1.12 VarO = 1.89 σ(P,O) = 

3.47 3.20 σP = 1.06 σO = 1.37 1.04



1475.1 Correlation

the degree of freedom, which can be explained like this. Assume that there are 15 
observations, we are free to choose 14 out of 15 at random; but for selecting the 
15th and last element, we would be left with no choice. In our example, note that 
the sample statistics—covariance, sigma, and r, are divided by n − 1 rather than 
n. The statistical significance of the correlation coefficient needs to be ascertained 
based on the associated p-value.

Let us run this using the Python code shown below. The numpy library is 
used in the first method, which provides the correlation coefficient. In the second 
method, we use scipy.stats library is used, which provides the p-value or level 
of significance, in addition to the correlation coefficient. The results show that 
r = 0.716 @ 0.003 level of significance. Since the p-value is ≤0.05, the correlation 
is significant.

Tutorial 5.1   Correlation 

Tutorial 5.1.1 Correlation Using NumPy Function

import numpy as np

a = np.zeros([15,2])
a[:,0] = np.array([5,2,4,4,3,5,2,2,4,2,4,4,4,4,3])
a[:,1] = np.array([3,2,5,3,2,6,1,2,5,2,3,4,3,3,4])
r=np.corrcoef(a[:,0], a[:,1]) 
print( r) # 0.71637516 # positive correlation

See the blue line in Figure 5-1: Positive and Negative Correlations

Tutorial 5.1.2 Correlation Using SciPy Function 

import scipy.stats
import numpy as np

a = np.zeros([15,2])
a[:,0] = np.array([5,2,4,4,3,5,2,2,4,2,4,4,4,4,3])
a[:,1] = np.array([3,2,5,3,2,6,1,2,5,2,3,4,3,3,4])

Refer: 
docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html

r, p = scipy.stats.pearsonr(a[:,0], a[:,1])
print('r=',round(r,3),'@',round(p,3),'level of significance')

r= 0.716 @ 0.003 level of significance -> positive correlation

Correlation between team experience with monitoring needs.
Another example of the Pearson correlation coefficient calculation is shown in 

Table 5.2. The data consists of measurements of two attributes—project monitor-
ing (M) and experience (E), from 15 software projects. A negative correlation of 
−0.62 was observed between them. This suggests that monitoring becomes less 
necessary when the team is more experienced. The associated p-value was 0.014, 
which is less than 0.05. Therefore, the correlation is significant—a statistically 



148 5 Regression Analysis

Table 5.2  Correlation between team experience and monitoring needs

M E r(M, E) = r(E, M) = σ(M, E)/(σM * σE) −0.62

project_ 
monitoring

team_ 
experience

Mi −  
Mmean

(Mi −  
Mmean)

2
Ei −  
Emean

(Ei −  
Emean)

2
(Mi − Mmean) * 
(Ei − Emean)

2 5 −0.07 0 0 0 0

2 4 −0.07 0 −1 1 0.07

2 5 −0.07 0 0 0 0

2 5 −0.07 0 0 0 0

1 6 −1.07 1.14 1 1 −1.07

3 5 0.93 0.87 0 0 0

2 5 −0.07 0 0 0 0

2 5 −0.07 0 0 0 0

2 5 −0.07 0 0 0 0

1 6 −1.07 1.14 1 1 −1.07

2 5 −0.07 0 0 0 0

2 4 −0.07 0 −1 1 0.07

2 5 −0.07 0 0 0 0

2 6 −0.07 0 1 1 −0.07

4 4 1.93 3.74 −1 1 −1.93

Mmean = Emean = VarM = 0.49 VarE = 0.43 σ(M,E) = 

2.07 5 σM = 0.7 σE = 0.65 −0.29

significant negative correlation exists between project monitoring (M) and experi-
ence (E).

5.2  Regression

Regression analysis examines associative relationships between a metric 
dependent variable and one or more independent variables.

5.2.1  Mathematical Insights on Linear Regression Model

Those who are not particular about mathematical insights may skip the rest of 
this sub-section and proceed to the ‘Linear Regression Model’. Consider the data 
points (Oi, Pi) shown in Table 5.3. The project outcome Oi can be predicted from 
project plan Pi, using the following set of equations, Oi = Pib1 + b0.

We need two equations to solve an equation of two variables, b1 and b0. 
However, we have 15 different equations. There could be a unique solution, in the 
rare case when all the points are aligned!. However, in the general case, we should 



149

Table 5.3  A set of 15 
linear equations to solve for 
Oi = Pib1 + b0

project_ outcome (Oi) project_ plan (Pi) Oi = Pib1 + b0

3 5 5 b1 + b0

2 2 2 b1 + b0

5 4 4 b1 + b0

3 4 4 b1 + b0

2 3 3 b1 + b0

6 5 5 b1 + b0

1 2 2 b1 + b0

2 2 2 b1 + b0

5 4 4 b1 + b0

2 2 2 b1 + b0

3 4 4 b1 + b0

4 4 4 b1 + b0

3 4 4 b1 + b0

3 4 4 b1 + b0

4 3 3 b1 + b0

5.2 Regression

presume that no single line, Pib1 + b0 = Oi, can cut through the scatter plot of P, 
and O. We instead look for a solution that minimizes the error (residual). We will 
examine the solution further in subsequent sections.

5.2.2  Multiple Linear Regression Model

Multiple linear regression analysis examines associative relationships between 
a target variable (y) and feature variables X {X1 … Xk}, where k is the number of 
features. The following equation shows one instance of y, y(i)

where
y(i) is the observed value of an instance of the target variable,
X is the feature vector, a set of ‘k’ independent variables,
β’s are the ‘k+1’ weights, or coefficients,
ε(i) is the error or the difference between the observed and predicted values of 

an instance of y, y(i),
i = 1…n, ‘n’ being the number of data points in the sample.
In practice, we use sample data to estimate y. The following equation estimates 

y, based on the best estimates of coefficients b0 … bk computed from the sample 
data.

y(i) = β0 + β1X
(i)
1 + β2X

(i)
2 + · · · + βkX

(i)
k + ε(i)

(5.1)y(i) = b0 + b1X
(i)
1 + b2X

(i)
2 + · · · + bkX

(i)
k + e(i)



150 5 Regression Analysis

where ŷ(i) is the estimated value of y, by the regression model and error in the esti-
mate, e(i) = y(i) − ŷ(i).

If only one independent variable exists, it is known as simple linear regression. 
If the number of independent variables is more than one, we call it multiple lin-
ear regression. To solve an equation of k variables, we need k equations. In prac-
tice, we have a large number of observations n >> k and the solution is usually not 
unique. There is no single hyperplane y = f(X), that can cut through the hyperspace 
space of dimension k + 1 dimension formed by y and vector X. We instead look 
for a solution that minimizes the error (residual) between the observed value of y 
and the value estimated from the equation ŷ = f(X). Matrix method, ordinary least 
squares (OLS) method, and gradient descent are three common approaches used to 
solve linear regression.

The matrix method involves expressing the linear regression problem as a 
matrix equation and solving it using linear algebra. It provides an exact mathemat-
ical solution, which can be computationally efficient for small to moderate-sized 
datasets. It requires the inverse of the matrix (XTX), which can be computationally 
intensive. In the ordinary least squares (OLS) method, we minimize the sum of 
squared differences between the predicted and actual values. It is more straight-
forward to implement, as inverse matrix computation is not involved. However, 
it is unsuitable for situations with nonlinear relationships between variables. 
Moreover, OLS is sensitive to outliers. Machine learning usually employs another 
method—gradient descent (or its variations). Gradient descent is an iterative opti-
mization technique to find the coefficients that minimize the cost function. A 
typical cost function considered in regression problems is a mean squared error. 
Gradient descent is suitable for large datasets and high dimensional feature spaces. 
However, it may require careful tuning of hyperparameters, such as the learning 
rate for convergence.

We will discuss the matrix method and OLS method in the following sections. 
Discussion of gradient descent is deferred to Chap. 11.

The matrix method solution

The equation-1 above can be represented in matrix form as

where
Β is column vector representing b0 … bk,
X is n × (k + 1) matrix,
Y is n × 1 column vector.
To minimize the error |E|,
Set, XB = Y
Multiplying both sides by XT

(5.2)ŷ(i) = b0 + b1X
(i)
1 + b2X

(i)
2 + · · · + bkX

(i)
k

Y = XB + E

XTXB = XTY

http://dx.doi.org/10.1007/978-981-99-0353-5_11


1515.2 Regression

Multiplying both sides by XT

OLS method solution

The most popular method is to minimize the sum of squared errors Σ(y − ŷ)2 
which, according to Gauss, is the best solution for a normal population. The Gauss-
Markov theorem asserts that the ordinary least squares (OLS) estimator exhibits 
the smallest sampling variance among linear unbiased estimators when the errors 
in the linear regression model are uncorrelated, have equal variances, and have an 
expectation value of zero (see Eq. 5.2).

Let ‘SSE’ be the sum of squared errors.

where

From the above equation, we can derive the values of the coefficients b0 … bk 
and build the linear regression model shown in Eq. 5.1. For example, consider the 
OLS method for one independent variable (simple linear equation).

B =
(
XTX

)−1
XT

XTXB = XTY

B =
(
XTX

)−1
XTY

ŷ(i) = b0 + b1X
(i)
1 + b2X

(i)
2 + · · · + bkX

(i)
k

e(i) = y(i) − ŷ(i)

SSE =
n∑

i=1

(y(i) − ŷ(i))
2

SSE =
n∑

i=1

(
y(i) − f (x)

)
,
2

f (x) = ŷ(i) = b0 + b1X
(i)
1 + b2X

(i)
2 + · · · + bkX

(i)
k + e(i)

ŷ(i) = b0 + b1x
(i) + e(i)

e(i) = y(i) − ŷ(i)

SSE =
n∑

i=1

[y(i) −
(
b0 + b1x

(i)
)
]2



152 5 Regression Analysis

Fig. 5.2  Explained and unexplained variation in regression model

From the above equation, we can derive the following:

5.2.3  The Coefficient of Determination

Consider the association between project_planning and project_outcome, dis-
cussed in Tutorial 5.1. Here, the ‘project_outcome’ (y) depends on ‘project_plan-
ning’ (x). Figure 5.2 shows the scatter plot of y over x. The yellow line indicates 
the mean value of y. The blue line shows the linear equation that predicts yi for a 
given xi

Take the case of the data instance (4, 5). Here the observed y-value is 5. The 
corresponding y-value predicted by the regression equation (blue line) is 3.7, rep-
resented by (4, 3.7). The mean value of y is 3.2, which is represented by the corre-
sponding point (4, 3.2). In other words, the observed y-value is 5, which is higher 
than the predicted y-value of 3.7, which is higher than the mean value of y (3.2).

b1 =
n(�xy)−�x�y

n
(
�x2

)
− (�x)2

b0 =
(�y)(�x)2 − (�x)(�xy)

n
(
�x2

)
− (�x)2

yi = b0 + b1xi



1535.2 Regression

The coefficient of determination R2 indicates the strength of the association of 
y and x. It is determined as follows:

R2 must be adjusted for the number of independent variables (k) and the sam-
ple size (n). Check Sect. 5.1 for an explanation of the value adjustment (Malhotra 
2020).

5.2.4  Manual Calculation of R2

Consider Tutorial 5.1. Here, the data consists of two measurements—project 
planning (P) and project outcome (O), from 15 software projects. Here, we com-
pute the Adjusted R2 for project outcome (O). Detailed calculations are in Table 
5.4. The first column shows the project outcome (Oi). The mean value of the pro-
ject outcome is Umean = 3.2. The second column shows the project outcome pre-
dicted (Opred) based on the rating for project planning. The python code for that is 
shown below. The third column shows the predicted outcome's deviation from the 
project mean, and the fourth column shows the corresponding variance. The fifth 
column is the deviation of the observed value of the project outcome from the pre-
dicted value, and the sixth column shows the corresponding variance. The bottom 
row is the summation of the values in the column.

Given the number of independent variables k = 1, sample size n = 15, and R2 = 
0.51.

Adjusted R2 = R2-k(1-R2)/(n-k-1)
= 0.51-1(1-0.51)/(15-1-1) = 0.47
Adj.R2 is 0.47. This implies that project_planning can explain 0.47 or 47% of 

the variance in project_outcome. That means, if we know the rating for project_
planning, we can predict the project_outcome in 47% of the cases. The section 
below shows the Python code for computing Adj.R2 and predicting project_out-
come based on the project_planning score.

Coefficient of determination R2

= Explained Variation/Total Variation

= Sum of Squares Regression/

(
Sum of Squares Regression

+ Sum of Squares Regression Residual

)

= SSregression/SStotal

Adjusted R2 = R
2 − k

(
1− R

2
)
/(n− k − 1)

Explained Variation = Sum of Squares Regression = SSreg = 13.48

Un− Explained Variation = Sum of Squares Residuals = SSres = 12.85

Total Variation = Sum of Squares Regression + Sum of Squares Residuals

SS Total = SSreg + SSres = 13.48+ 12.85 = 26.33

R2 = SSreg/SStotal = 13.48/26.33 = 0.51



154 5 Regression Analysis

Table 5.4  Computation of adjusted R2

project_ 
outcome 
(Oi)

project_ 
outcome_ 
predicted 
(Opred)

Opred − Omean Explained =  
(Opred − Omean)

2
Oi − Opred Unexplained  =  

(Oi − Opred)
2

3 4.62 1.42 2.02 −1.62 2.62

2 1.84 −1.36 1.85 0.16 0.03

5 3.69 0.49 0.24 1.31 1.72

3 3.69 0.49 0.24 −0.69 0.48

2 2.77 −0.43 0.18 −0.77 0.59

6 4.62 1.42 2.02 1.38 1.90

1 1.84 −1.36 1.85 −0.84 0.71

2 1.84 −1.36 1.85 0.16 0.03

5 3.69 0.49 0.24 1.31 1.72

2 1.84 −1.36 1.85 0.16 0.03

3 3.69 0.49 0.24 −0.69 0.48

4 3.69 0.49 0.24 0.31 0.10

3 3.69 0.49 0.24 −0.69 0.48

3 3.69 0.49 0.24 −0.69 0.48

4 2.77 −0.43 0.18 1.23 1.51

Omean = SSreg = SSres = 

3.20 13.48 12.85

Tutorial 5.2 Linear regression - Using statsmodels / ols

import pandas as pd

refer: https://www.statsmodels.org/stable/regression.html
from statsmodels.formula.api import ols
# creating the dataframe
d  = pd.DataFrame()
# explicitly assign column names, load data
d['project_plan'] = [5,2,4,4,3,5,2,2,4,2,4,4,4,4,3]
d['project_outcome'] = [3,2,5,3,2,6,1,2,5,2,3,4,3,3,4]

ols linear regression (y, x)
m = ols("project_outcome ~ project_plan", data=d).fit()

Predict Project Outcome score based on the rating for Project Planning
m.predict(d.project_plan) 

m.rsquared_adj   
Adjusted R2 = 0.47; Since the value is less than 0.5, the model is not sig-
nificant 

m.fvalue     # 13.704 : F statistic
m.f_pvalue   # 0.0027 : Probability of F statistic 
m.tvalues    # The significance of independent variable, project planning



1555.3 The Regression Analysis Procedure

5.2.5  Significance of the Overall Linear Regression Model

F-test is used to test the null hypothesis that the coefficient of multiple determi-
nation of the population:

Ho: R
2population = 0.

The test statistic has an F distribution with k and (n − k − 1) degrees of 
freedom.

If the F-statistic is significant (e.g., p-value ≤ 0.05), the model is considered sta-
tistically significant. In the above example, the F-statistic is 13.7, for 1, 13 degrees 
of freedom. The associated p-value is 0.0027, which is less than equal to the sig. 
level assumed ‘0.05’. This implies that the null hypothesis is rejected, and R2 pop-
ulation > 0. The coefficient of regression is significant. In summary, the regression 
model that predicts project outcomes based on project planning is significant.

5.3  The Regression Analysis Procedure

The steps to be followed in regression analysis are listed below (Hair et al. 
2010). Some of the underlying terms and concepts are discussed in the subsequent 
sections.

5.3.1  Primary Inspection of the Results of Regression 
Analysis

The basic checks in regression analysis include the statistical significance of 
the overall model, the statistical significance of the variables involved, and the per-
centage of variation explained by the model. If they are satisfactory, the regression 
model (or regression equation) can be constructed. We need to do the following 
steps [S1]–[S10] in order.

[S1] Do the independent variables together explain the variation in the dependent 
variable in a statistically significant manner? If we aim for a level of signifi-
cance (α) of 0.05, check whether the p-value of the F-statistic ≤ 0.05.

[S2] Do each of the independent variables have a statistically significant associa-
tion with the dependent variable? We may use one of the following methods.

F = (SSregression/k)/(SSresidual/(n− k − 1))

Alternatively,F =
SSregression

SSresidual
∗
(n− k − 1)

k



156 5 Regression Analysis

 (a) Check the significance level of the ‘t’ statistic of the coefficients ‘bi’. 
Identify the variables that are not significant (p-value > 0.05). Discard 
them one at a time (based on how high their p-values are) and re-esti-
mate the model iteratively.

 (b) Stepwise regression: This is a more rigorous method. Check the sig-
nificance of the coefficient bi of each variable through an incremental 
F-test, retain the most contributing ones—refer to the section on step-
wise regression. This method is discussed in a separate section. It may 
be noted that this method is also not fail-proof, as multicollinearity can 
affect variable selection.

[S3] Check the coefficient of determination. This is also called adjusted R2 or 
the explanatory power of the model. This is the amount of variation in the 
dependent variable that is explained by the independent variables.

[S4] Construct the regression model (also called the regression equation).

5.3.2  Some Concepts Associated with Regression Analysis

The researcher needs to consider various aspects of the data and the model to 
develop an effective regression model. The common aspects that are inspected 
include autocorrelation of the observations, multicollinearity of the variables, 
homoscedasticity of residual error, part and partial correlation of each variable 
with the outcome, normality of the distribution, model fit, etc. They are discussed 
here.

Standardized Regression Equation

Data standardization helps us compare variables measured on different scales, e.g., 
pounds and kilograms. There are many methods for data standardization—min–
max, z-score, decimal scaling, etc. z-score standardization is popularly used in 
statistical data mining. A variable is standardized by subtracting its sample mean 
from it and dividing it by its standard deviation. An observation xi can be trans-
formed to z-score as follows:

where ‘s’ is the standard deviation of the sample.

Multicollinearity and Variance Inflation Factor (VIF)

Multicollinearity arises when intercorrelations among the predictors are very 
high. Variance Inflation Factors (VIF) is a measure of multicollinearity (Hair et al. 
2010). VIF is directly related to the tolerance value (VIF = 1/Tolerance). VIF value 
of 3–5 is normally acceptable for an independent variable. Multicollinearity can 
result in several problems:

zi = (xi − xmean)/, s



1575.3 The Regression Analysis Procedure

• The partial regression coefficients may not be estimated precisely.
• The standard errors are likely to be high.
• It becomes difficult to assess the relative importance of the independent varia-

bles in explaining the variation in the dependent variable.
• Predictor variables may be incorrectly included or removed in stepwise 

regression.

How to deal with challenges from multicollinearity?

• Remove some of the highly correlated independent variables or use only one of 
the variables in a highly correlated set of variables.

• Combine the highly correlated independent variables into one.
• Use dimension reduction techniques designed for highly correlated variables, 

such as principal components analysis or partial least squares regression to 
transform a set of independent variables into fewer components.

• Use ridge regression or latent root regression, which are advanced forms of 
regression analysis that can handle multicollinearity.

Autocorrelation and the Durbin-Watson test statistic

Autocorrelation is the similarity over a sequence of observations or the observa-
tions in a time series. This may result in underestimates of the standard error, lead-
ing a researcher to think that the predictors (independent variables) are significant 
when they are not (Malhotra 2020). The Durbin-Watson test statistic is a numer-
ical measure employed in statistical analysis to assess the presence of autocorre-
lation in the residuals of a regression model. The range of values for this statistic 
and a thumb rule for their interpretation is shown below:

• A value of ‘2’ indicates no autocorrelation.
• A value between 0 and 2 indicates positive autocorrelation (common in time 

series).
• A value >2, indicates negative autocorrelation.

Homoscedasticity

Homoscedasticity assumes that the variance of the error term is constant. 
Otherwise, the data are said to be heteroscedastic. Homoscedasticity is an impor-
tant assumption in many multivariate techniques.

Partial correlation coefficient

The partial correlation coefficient measures the strength of the association of a sin-
gle independent variable with the dependent variable when the effects of the other 
independent variables in the model are held constant. It measures the incremental 
predictive effect of an independent variable (Hair et al. 2010). It can be expressed 
as follows:



158 5 Regression Analysis

The partial correlation coefficient plays a crucial role in variable selection during 
the construction of regression models, including methods like forward addition or 
backward elimination. It helps identify the independent variable that adds the most 
predictive power beyond what is already accounted for by the independent varia-
bles already incorporated into the regression model.

Part correlation

Part correlation measures the strength of association of a single independent var-
iable with the dependent variable when the effect of the other independent varia-
bles in the regression model is removed (Malhotra 2020). It can be expressed as 
follows:

Skewness/Kurtosis

The Omnibus and Jarque-Bera (JB) tests are used to check whether the skewness 
and kurtosis are within the limits expected of a normal distribution. The Jarque-
Bera test works only works for large data samples (>2000). The p-value of the test 
statistic must be within acceptable limits (e.g., ≤0.05).

Akaike information criterion (AIC)

AIC is an indicator of model fit. It is used for comparing models. According to this 
criterion, the best fit model is the model that explains the highest amount of var-
iation using the minimum possible independent variables. The lower the AIC, the 
better the model.

5.3.3  Advanced Inspection of the Results of Regression 
Analysis

Check for autocorrelation of the observations, Skewness/Kurtosis of the 
dependent variables, multicollinearity of the variables, randomness of residual 
errors, and the relative importance of the independent variables.

rxy.z =
[
rxy −

(
rxzryz

)]
√
(1− rxz2)(1− ryz2)

ry(x.z) =
[
rxy −

(
rxzryz

)]
√
(1− rxz2)



159

Fig. 5.3  Distribution of the variables influencing software project performance

5.4 Case Study on Regression Analysis

[S5] Is the autocorrelation of the observations within acceptable limits? A value 
of 2 for the Durbin-Watson statistic indicates that there is no autocorrela-
tion among the observations.

[S6] Are the Skewness/Kurtosis of the dependent variable within acceptable 
limits? p-values of Omni Bus/JB Test must be ≤0.05.

[S7] Inspect the multicollinearity of the variables (variable to variable interac-
tion). Is each variable’s variance inflation factor (VIF) within acceptable 
limits? A thumb rule, for social science problems, states that VIF must be 
≤5.

[S8] Is the residual plot homoscedastic.
[S9] Are the partial regression plots of each independent variable with the 

dependent variable homoscedastic?
[S10] Determine the relative importance of the independent variables.

5.4  Case Study on Regression Analysis

A study was conducted to explore the variables that influence software project 
performance (‘project_perf’). Eleven variables were hypothesized to influence 
project performance. 100 responses were collected from IT consultants working 
on various projects (Sundararajan et al. 2019). The distributions of the 11 inde-
pendent variables are shown in Fig. 5.3. Please refer (Sundararajan 2023) for data 
and data description.



160 5 Regression Analysis

5.4.1  Case Study—Part I—Number Checks

Perform regression analysis. Inspect the p-value of the F-statistic for sig-
nificance, the level of significance of the ‘t’ statistic of the coefficients ‘bi’, the 
coefficient of determination, the regression model, the autocorrelation of the 
observations for acceptable limits, skewness/kurtosis of the dependent variable for 
acceptable limits the variance inflation factor (VIF) of each variable for accept-
able limits, the residual plot for homoscedasticity, the partial regression plots of 
the independent variables with the dependent variable for homoscedasticity, and 
[S10] the relative importance of the independent variables.

Tutorial 5.4   Detailed Regression Analysis – Using statsmodels / OLS

Tutorial 5.4.1 Data Setup

import pandas as pd

For data and data description please refer {(Sundararajan, 2023)}. If the 
data has missing values, they must be removed / imputed

d=pd.read_csv('itprojects.csv') 
d.columns

'Case_No', 
'change_mgmt', 'project_plan', 'tech_mentoring', 'pm_tools', 
'dev_process', 'system_arch', 'design_think', 'team_skills', 
'core_team', 'prior_exp', 'rewards_recog', 
'project_type', 'project_perf'

X = d[['change_mgmt', 'project_plan', 'tech_mentoring', 'pm_tools', 
       'dev_process', 'system_arch', 'design_think', 'team_skills', 
       'core_team', 'prior_exp', 'rewards_recog']]

Tutorial 5.4.2 The Distribution of the Feature Variables (X)  

A kernel density estimate plot shows the frequency distribution of vars, like 
a histogram. But it uses a continuous probability density function  

import matplotlib.pyplot as plt
import seaborn as sb

sb.kdeplot(data=X)
plt.xlabel('variable rating')
plt.ylabel('probability density')
plt.title ('KDE plot of independent variables', size=10)
plt.show()

See Figure 5-3 Distribution of the variables influencing software project 
performance



1615.4 Case Study on Regression Analysis

Tutorial 5.4.3 Linear Regression (using OLS)

We will use 'OLS' (Refer statsmodels.api). Note that the module name is in 
capital letters, it is not ‘ols’, which we used earlier 

import statsmodels.api as sm  # for regression

Do Data Setup as in 5.4.1. Read in the DataFrame d, Setup features in X

Add a column of constants, as a place holder for intercept
X['intercept'] = 1  

The dependent variable is project performance
y = d.project_perf 

model = sm.OLS(y,X,missing='drop') #discard missing values if any 
result=model.fit()

round(result.f_pvalue,3) # 0.0 p-value of F test
round(result.pvalues,3)  # p-value of t-Tests, last one is intercept

change_mgmt       0.359
project_plan      0.000
tech_mentoring    0.008
pm_tools          0.614
dev_process       0.734
system_arch       0.899
design_think      0.771
team_skills       0.005
core_team         0.033
prior_exp         0.149
rewards_recog     0.243
intercept         0.000

result.rsquared_adj      #0.536

Discussion: -
result.summary() gives Complete Result
result.params gives the coefficients of independent variables followed by the 
intercept
[S1] Overall Significance of the model - p(F statistic)
The Prob of F-statistic < 0.05; This implies that regression model is sig-
nificant at 0.05 levels
[S2] Significance of individual predictors p(t statistic) must be < 0.05
Only 4 variables have p-value less than 0.05. They are:- project_plan, 
team_skills, tech_mentoring, core_team. The intercept is not a variable. so 
do not check its p-value. 
[S3] The strength of association (Adj.R2 = 0.536 = 53.6%) is Above 50%. There-
fore, the regression model is significant



162 5 Regression Analysis

Tutorial 5.4.4 Discarding the Variables that are Not Significant

Note:- This is a simple approach. If any of the variables are interdependent, 
the method will not be effective

import statsmodels.api as sm  # for regression

Do Data Setup as in 5.4.1. Read in the DataFrame d; Setup features in X. We 
choose only four independent variables that were found to be significant 

X = d[['project_plan', 'tech_mentoring','team_skills','core_team' ]]

Add a column of constants, as a place holder for intercept
X['intercept'] = 1  

The dependent variable is project performance
y = d.project_perf 

model  = sm.OLS(y,X,missing='drop') # discard missing values if any 
result = model.fit()
print(result.summary())  # Note the () after summary. It is a method

                OLS Regression Results                            
--------------------------------------
R-squared:                       0.562
Adj. R-squared:                  0.544    (with all var, it was 0.536)
Method:                  Least Squares
Prob (F-statistic):           2.47e-16
No. Observations:                  100
AIC:                             211.1    (with all var, it was 219.3)
Df Residuals:                       95
Df Model:                            4                                         
----------------------------------------------------------
                     coef    std err          t      P>|t|
----------------------------------------------------------
project_plan       0.7151      0.077      9.291      0.000 
tech_mentoring     0.2430      0.090      2.689      0.008 
team_skills        0.3196      0.107      2.996      0.003 
core_team          0.2589      0.111      2.334      0.022 
intercept         -6.7584      0.797     -8.484      0.000 
----------------------------------------------------------
Durbin-Watson:                   1.760
Prob(Omnibus):                   0.001
Prob(JB):                        0.119
Skew:                           -0.111
Kurtosis:                        2.014
--------------------------------------

The Model:-
[S1] Overall Significance of the model - p(F statistic)
The Prob of F-statistic < 0.05. This implies that the regression model is 
significant at 0.05 levels
[S2] Significance of individual predictors - p-value of t statistics. All 4 
independent variables have p-values less than 0.05. (Intercept is not a vari-
able. so do not check its p-value) 
[S3] The strength of association (Adjusted R2)



1635.4 Case Study on Regression Analysis

(Adjusted R2) = 0.544 or 54.4%. This is above 50%. So, the explanatory power 
of the model is acceptable  
[S4] The Regression Model

   project_perf = 
       -6.7584 + 0.7151 * project_plan + 0.2430 * tech_mentoring +
        0.3196 * team_skills + 0.2589 * core_team

Other Validity Checks:-
[S5] Durbin-Watson tests autocorrelation. A value of 2 is ideal. 
In this case, the value is 1.760, which is acceptable. 
durbin watson statistic can be also computed as follows, separately:-

from statsmodels.stats.stattools import durbin_watson 
durbin_watson(x)

[S6] Omnibus and JB indicate whether the skewness and kurtosis are within 
the limits expected of a normal distribution. The Jarque-Bera test works for 
large data samples (>2000) only. Omnibus test p-value = 0.001, which is < 
0.05. Therefore, skewness and kurtosis are within expected limits

Tutorial 5.4.5 Variance Inflation Factor (VIF)

[S7] Variance Inflation Factor (VIF)

Refer: https://patsy.readthedocs.io/en/latest/quickstart.html
from   patsy import dmatrices
from   statsmodels.stats.outliers_influence import
variance_inflation_factor

Do Data Setup as in 5.4.1. Read in the DataFrame d. 

Using patsy.dmatrices split data into y,X 
y, X = dmatrices('project_perf ~ project_plan + tech_mentoring + 
team_skills + core_team',data=d, return_type='dataframe')

Create an empty DatFrame
vifmatrix = pd.DataFrame()

Save column names in varlist, except the column intercept
varlist   = X.columns.drop('Intercept') 
nc        = X.shape[1]  # number of columns = 5

Create columns and name the columns in the DataFrame vifmatrix
vifmatrix['variable'] = varlist

Compute vif for the feature variables
We do not need vif of the first column of X (Intercept). So, use range(1,nc) 

vifmatrix['vif'] = [variance_inflation_factor(X.values, i) for i in 
range(1,nc)]
print(vifmatrix)

https://patsy.readthedocs.io/en/latest/quickstart.html


164 5 Regression Analysis

(a) Residual Plot (b) Plot of Variance of Residuals

Fig. 5.4  Residuals plot

         variable       vif
0    project_plan  1.109133
1  tech_mentoring  1.229132
2     team_skills  1.383400
3       core_team  1.211738

[S7] Variance Inflation Factor (VIF) is almost equal to 1, for all the inde-
pendent variables. This is acceptable.

5.4.2  Case Study—Part II—Visual Inspections

In this section we will do visual inspections of the residual plot and partial 
regression plot of the dependent variable with each independent variable.

The Residual Plot and Homoscedasticity [S8]

The difference between an observed value of yi and the value predicted by the 
regression equation is called residual (error). To ensure that the residuals are ran-
dom (and are not due to hidden variables or the sequencing of observations), the 
following assumptions must be validated (Malhotra 2020):

• The error term is normally distributed.
• The mean value of the error term is zero.
• The variance of the error term is constant.
• The error variance does not change over time or sequence of the observations 

(Homoscedasticity).

Figure 5.4a shows the results from Tutorial 5.10. It shows a residual plot that is 
somewhat homoscedastic, as it does not show any specific trend across the obser-
vations on the x-axis. From Fig. 5.4b, we observe that the mean is zero and the 
variance is somewhat constant (the variance does not show any specific trend 
across the observations).



165

Fig. 5.6  Partial regression and residuals plots for ‘project plan’

Fig. 5.5  Partial regression plots

5.4 Case Study on Regression Analysis

The Homoscedasticity of the Partial Regression Plots [S9]

The partial regression plot of the dependent variable with each independent var-
iable, must be homoscedastic. Partial regression plots of the outcome variable 
for four predictor variables are shown in Fig. 5.5. The partial regression plots are 
somewhat homoscedastic, as there is no prominent trend across the x-axis.

Visual Inspections

The following visual inspections are carried out here.

[S8] Is the residual plot homoscedastic?

[S9] Are the partial regression plots of each independent variables with the 
dependent variable homoscedastic?



166 5 Regression Analysis

Tutorial 5.4.6 The Residual Plot

[S8] The residual plot must be homoscedastic. 
The residual error distribution of input variables, over all the values, is 
expected to have a mean value of zero and constant variance. Figure 5-4 (a) 
shows that the mean value is not zero. Figure 5-4 (b) shows that the variance 
is somewhat normal.
Homoscedasticity implies that the variance of the residual error, in a re-
gression model is constant. From a visual examination of Figure 5-4 (a), and 
Figure 5-4 (b), the residual error plot appears somewhat homoscedastic.

import pandas as pd
from statsmodels.formula.api import ols
import matplotlib.pyplot as plt

d=pd.read_csv('itprojects.csv')
X = d[['project_plan', 'tech_mentoring','team_skills','core_team' ]]

Add a column of constants, as a place holder for intercept
X['intercept'] = 1  

The dependent variable is project performance
y = d.project_perf 

model = ols('y ~ project_plan + tech_mentoring + team_skills + 
core_team', data=d).fit()

yp = model.predict(X)
residual = y - yp
plt.scatter(x=yp, y=residual)
plt.title('residual plot')
plt.xlabel('predicted project performance')
plt.ylabel('residuals')
plt.show()

mean ='mean=' + str(round(residual.mean(),4))
var = residual ** 2
plt.plot(var)
plt.title ('plot of the variance of residuals, '+mean)
plt.xlabel('observations')
plt.ylabel('variance')
plt.show()

See Figure 5-4 Residuals Plot



1675.4 Case Study on Regression Analysis

Tutorial 5.4.7 Partial Regression Plots - Brief

[S9] Inspecting the homoscedasticity of partial regression plots 
The partial regression plot shows the relationship between the response (tar-
get) and an explanatory variable (feature), after removing the effect of all 
other explanatory variables (features)
Interpretation of the Results: -
Check Figure 5-5, partial regression plots of the outcome variable for each 
predictor variable. The variance of project_perf over different values of 
project_plan is somewhat constant. Therefore, this partial regression plot is 
somewhat homoscedastic. The variance of project_perf over different values of 
tech_mentoring is not constant; the variance being high in the middle. There-
fore, this partial regression plot cannot be considered as homoscedastic.

import statsmodels.api as sm
import pandas as pd
import matplotlib.pyplot as plt

d=pd.read_csv('itprojects.csv') 

sm.graphics.plot_partregress(
    endog='project_perf', exog_i='project_plan',
    exog_others=['tech_mentoring', 'team_skills', 'core_team'],
    data = d, obs_labels=False)
plt.show()

See Figure 5-5: Partial Regression Plots

sm.graphics.plot_partregress(
    endog='project_perf', exog_i='tech_mentoring',
    exog_others=['project_plan', 'team_skills', 'core_team'],
    data = d, obs_labels=False)
plt.show()

See Figure 5-5: Partial Regression Plots

sm.graphics.plot_partregress(
    endog='project_perf', exog_i='team_skills',
    exog_others=['project_plan', 'tech_mentoring', 'core_team'],
    data = d, obs_labels=False)
plt.show()

sm.graphics.plot_partregress(
    endog='project_perf', exog_i='core_team',
    exog_others=['project_plan', 'team_skills', 'tech_mentoring'],
    data = d, obs_labels=False)
plt.show()



168 5 Regression Analysis

Tutorial 5.4.8 Partial Regression Plot – Detailed

Plot regression results against one regressor in a 2 by 2 figure - endog (tar-
get) versus exog (feature); residuals vs exog (feature); fitted (target) vs 
exog (feature); fitted plus residual exog (feature). See Figure 5-6 Partial 
Regression and Residuals Plots for ‘project plan’

import statsmodels.api as sm
import statsmodels.formula.api as sf
import pandas as pd
import matplotlib.pyplot as plt

d=pd.read_csv('itprojects.csv') 
variables = 'project_perf ~ project_plan'
m = sf.ols(variables, data=d).fit()

plot = sm.graphics.plot_regress_exog(m, 'project_plan')
plot.tight_layout(pad=1.0)
plt.show() 

variables = 'project_perf ~ team_skills'
m = sf.ols(variables, data=d).fit()
plot = sm.graphics.plot_regress_exog(m, 'team_skills')
plot.tight_layout(pad=1.0)
plt.show() 

variables = 'project_perf ~ tech_mentoring'
m = sf.ols(variables, data=d).fit()
plot = sm.graphics.plot_regress_exog(m, 'tech_mentoring')
plot.tight_layout(pad=1.0)

plt.show() 

5.5  Case Study—Stepwise Regression

Assume that there are many independent variables in our model. We want to 
discard trivial variables and select the significant ones. Stepwise regression is a 
method for achieving that. In stepwise regression, the independent variables are 
entered or removed from the regression equation one at a time, based on the effect 
on R2 (Hair et al. 2010). The partial correlation coefficient is a good measure for 
variable selection.



169

Table 5.5  Partial correlation of project outcome vs variables taken one at a time

Forward add Variable Partial correlation Incremental R2 Backward remove

1 project_plan 0.622 0.387280

2 team_skills 0.296 0.087467

3 tech_mentoring 0.278 0.077043

4 core_team 0.225 0.050565

prior_exp −0.153 0.023482 7

rewards_recog 0.124 0.015476 6

change_mgmt 0.098 0.009561 5

pm_tools 0.054 0.002904 4

dev_process 0.036 0.001314 3

design_think 0.031 0.000966 2

system_arch 0.014 0.000183 1

5.5 Case Study—Stepwise Regression

The Forward Regression Method

We add the variables, one at a time based on the partial correlation coefficient, as 
per the order shown under the column ‘Forward add’. The Python code for com-
puting the partial correlation is shown below.

The Backward Regression Method

Initially, regression analysis is done with the entire set of variables (all the inde-
pendent variables, versus the dependent variable). If the model is not significant, 
we remove the independent variables one at a time, based on its partial correlation 
coefficient. We repeat this process till the entire model is significant. The order in 
which the variables are removed is shown under the column ‘Backward remove’ in 
Table 5.5. Initially, we have 11 variables. We remove the variables, system_arch, 
design_think, pm_tools, dev_process, change_mgmt, rewards_recog, and prior_
exp in order. After 7 iterations, 4 independent variables remain, all of which are 
significant. The selected variables are project_plan, tech_mentoring, team_skills, 
and core_team.

In a particular iteration, if there is a conflict in removing a variable, we may 
look at the significance of the t-test of the bi’s (Note that the bi’s are the coeffi-
cients of the independent variables in the regression equation). Also, inspect the 
contribution to Adjusted R2. We will remove the variable with the lowest contribu-
tion to Adjusted R2 or the highest p-value associated with the t-test.



170 5 Regression Analysis

Tutorial 5.5.1 Forward Regression Method

In stepwise regression, the independent variables are entered or removed from 
the regression equation one at a time, based on the effect on R2. The partial 
correlation coefficient is a good measure for variable selection.      

import pandas as pd
import numpy  as np

Install pingouin package. You may refer: 
https://pingouin-stats.org/generated/pingouin.partial_corr.html

!pip install pingouin
import pingouin as pin

Download the file from GitHub (See Chapter-1.3)
d = pd.read_csv('itprojects.csv')

X = d[['change_mgmt', 'project_plan', 'tech_mentoring', 
       'pm_tools', 'dev_process', 'system_arch', 'design_think',
       'team_skills', 'core_team', 'prior_exp', 'rewards_recog']]

PC = pd.DataFrame() 
PC['variable'] = X.columns
PC['partial_corr'] = np.ones(len(PC.variable))
PC['incremental_R2'] = np.ones(len(PC.variable))

j = 0
for i in PC.variable:
    Xcov = X.drop(i, axis=1)
    pc   = pin.partial_corr(data=d, y='project_perf', x=i,
covar=list(Xcov.columns))
    PC['partial_corr'][j]   = round(pc['r'][0],3)
    PC['incremental_R2'][j] = pc['r'][0] ** 2
    j = j+1

PC = PC.sort_values(by='incremental_R2',ascending=True)
print(PC)

The result is shown in Table 5-5 Partial Correlation

Tutorial 5.5.2 The Backward Regression Method

import statsmodels.api as sm  # for regression

X = d[['change_mgmt','project_plan','tech_mentoring','pm_tools','dev_process' 
 ,'system_arch','design_think','team_skills','core_team','prior_exp','rewards_
recog']]

X['intercept']=1

y= d.project_perf



1715.6 Case Study—Feature Ranking

for i in PC.variable:
    X.drop(i,inplace=True,axis=1)
    print(X.columns)
    model = sm.OLS(y,X)
    result=model.fit()
    modelfit = False
    for j in range(len(result.pvalues)-1):

If p-value > 0.05, we found a variable that is NOT significant
        if result.pvalues[j] > 0.05:
            break

The last one is intercept. It can be discarded
        if j == (len(result.pvalues)-2):

If the other variables are significant, the entire model is GOOD!
            modelfit = True
            break
    if modelfit == True:

We found that the independent variables are all significant!
Let us quit the 'for' loops! Job Over

       break

print(X.columns)
'project_plan','tech_mentoring','team_skills','core_team','intercept'

Use the features selected in stepwise regression to build a model

5.6  Case Study—Feature Ranking

If you have too many variables, you may need to rank and select fewer vari-
ables based on criteria such as the partial regression coefficient or p-value asso-
ciated with the t statistic, etc. The researcher may maintain some variables even 
though they are less important if he/she posits that they are important to the model 
from a theoretical or practical perspective. The features can be handpicked if there 
are only a few of them. However, if there are numerous features, we may automate 
the process.

Feature Ranking—Manual Determination

[S10]  Determine the relative importance of the independent variables. Some of 
the methods for this are mentioned below.



172 5 Regression Analysis

1. Observe the effect on R2, with the entry or exit of a variable. See the 
Section on Stepwise Regression for more details.

2. Inspect the partial correlation coefficient.
3. Inspect the absolute values of partial regression coefficients |‘bi’|, in 

the standardized regression equation.
4. Inspect the absolute values of the bivariate (Xi ~ y) correlation 

coefficient.
5. Inspect the part correlation coefficient.

Automatic Feature Selection

In this tutorial, we use the ‘scikitlearn’ machine learning library to rank and 
select features (refer: https://scikit-learn.org/stable/modules/linear_model.html). 
The estimator is ‘trained’ on the initial set of features. Based on the feature rank-
ing that emerges, some of the least prominent ones are removed. The above proce-
dure is recursively repeated on the pruned set until the desired number of features 
is achieved. Chapter 11 Machine learning will throw more light on the underlying 
concepts.

Tutorial 5.6   Feature Ranking - Manual Determination

Tutorial 5.6.1: Inspect the partial regression coefficients |'bi'| 

Standardize y, and X and build regression model analysis. 
Compare the significance of the independent variables, by checking the p-
values associated with them thrown by the t-Test

import pandas as pd
import statsmodels.api as sm  # for regression
from scipy import stats       # for z-score standardisation

Do Data Setup as in 5.4.1. Read in the DataFrame d

Setup Features in X
Xz = stats.zscore(X)
y = d.project_perf 

model  = sm.OLS(y,Xz,missing='drop') # discard missing values if any 
result = model.fit()
print(result.summary())  
                  bi            p-Value
project_plan    0.6312        0
team_skills     0.2489        0.0044
tech_mentoring  0.2218        0.0077
core_team       0.197         0.0321
rewards_recog   0.099         0.24
change_mgmt     0.0777        0.3565
pm_tools        0.0396        0.6119
dev_process     0.0315        0.733

https://scikit-learn.org/stable/modules/linear_model.html
http://dx.doi.org/10.1007/978-981-99-0353-5_11


1735.6 Case Study—Feature Ranking

design_think    0.0286        0.7699
system_arch     0.0133        0.8986
prior_exp      -0.1451        0.147#

Interpretation: -
The variables listed above are sorted in the descending order of importance

Tutorial 5.6.2 Bivariate (Xi ~ y) Correlation

Inspect the absolute values of the bivariate (Xi ~ y) corr. coefficient 
Do Data Setup as in 5.4.1. Read in the DataFrame d; Setup Features in X

import numpy as np
varlist   = X.columns
y = d.project_perf 
corrmatrix             = pd.DataFrame()
corrmatrix['variable'] = varlist
nvar                   = len(varlist)
corrmatrix['corr'] = [np.corrcoef(y, 
        d[varlist[i]])[0,1] for i in range(nvar)]
corrmatrix.sort_values(by='corr',ascending=False)

          variable      corr
1     project_plan  0.675742
0      change_mgmt  0.447929
7      team_skills  0.392090
10   rewards_recog  0.273900
8        core_team  0.217314
5      system_arch  0.217010
9        prior_exp  0.193188
6     design_think  0.167782
4      dev_process  0.116861
2   tech_mentoring -0.088914
3         pm_tools -0.130020

Interpretation: -
Each method will give a different result, due to multicollinearity (or the 
interdependence of the feature variables) 

Tutorial 5.6.3 Compute Partial Correlations

Each feature versus target
Save the absolute value of the partial correlations. Sort it

import pandas as pd
import pingouin as pin
import numpy as np

d=pd.read_csv('itprojects.csv')
X = d[['change_mgmt', 'project_plan', 'tech_mentoring', 'pm_tools', 
       'dev_process', 'system_arch', 'design_think', 'team_skills', 
       'core_team', 'prior_exp', 'rewards_recog']]



174 5 Regression Analysis

PC = pd.DataFrame() 
PC['variable'] = X.columns
PC['partial_corr'] = np.ones(len(PC.variable))

j = 0
for i in PC.variable:
    Xcov = X.drop(i, axis=1)
    pc   = pin.partial_corr(data=d, y='project_perf', 
x=i,covar=list(Xcov.columns))
    PC['partial_corr'][j]   = abs(pc['r'][0])
    j = j+1

PC.sort_values(by='partial_corr',ascending=True, inplace=True)
print(PC)
          variable  partial_corr
5      system_arch      0.013543
6     design_think      0.031087
4      dev_process      0.036254
3         pm_tools      0.053885
0      change_mgmt      0.097780
10   rewards_recog      0.124403
9        prior_exp      0.153238
8        core_team      0.224867
2   tech_mentoring      0.277566
7      team_skills      0.295748
1     project_plan      0.622318

Analysis: -
Note that the rank of the independent variables obtained from the bi-variate 
correlation from that of the partial correlation. Partial correlation as-
sesses the association between two variables, while controlling (or account-
ing for) the influence of other variables. Therefore, it is more reliable.

Tutorial 5.6.4 Recursive Feature Elimination

Specify the number of desired features as an input

import pandas as pd
import numpy as np
from scipy import stats
from sklearn.linear_model import Ridge
from sklearn.linear_model import ElasticNet
from sklearn.feature_selection import RFE
from sklearn.feature_selection import RFECV

d=pd.read_csv('itprojects.csv')  

X = d[['change_mgmt', 'project_plan', 'tech_mentoring', 'pm_tools',
       'dev_process', 'system_arch', 'design_think', 'team_skills',
       'core_team', 'prior_exp', 'rewards_recog']]



1755.6 Case Study—Feature Ranking

z-score standardization
X = stats.zscore(X) # standarize X

y = d.project_perf

Tutorial 5.6.5 RFE using elastic net

Elastic net is a regularization method in machine learning, that helps in 
feature elimination/feature selection. It is a combination of ridge and lasso 
regression. More details will be covered in Chapter 11

m=RFE(estimator=ElasticNet(), n_features_to_select=4, step=1, 
      importance_getter='coef_')
m.fit(X,y)
selected_var = pd.DataFrame()
selected_var ['variable'] = X.columns
selected_var ['ranking'] =  m.ranking_
selected_var ['selected'] = m.support_
selected_var

          variable  ranking  selected
0      change_mgmt        8     False
1     project_plan        1      True
2   tech_mentoring        7     False
3         pm_tools        6     False
4      dev_process        5     False
5      system_arch        4     False
6     design_think        3     False
7      team_skills        2     False
8        core_team        1      True
9        prior_exp        1      True
10   rewards_recog        1      True

selected_var[selected_var.selected == True]
selected_var
1    project_plan        1      True
8       core_team        1      True
9       prior_exp        1      True
10  rewards_recog        1      True

Tutorial 5.6.6 RFE using Ridge Regression

Ridge regression is a method for regularization in machine learning. More 
details will be covered in Chapter 11.

m=RFE(estimator=Ridge(), n_features_to_select=4, step=1, 
      importance_getter='coef_')
m.fit(X,y)
selected_var = pd.DataFrame()
selected_var ['variable'] = X.columns
selected_var ['ranking'] =  m.ranking_
selected_var ['selected'] = m.support_
selected_var



176 5 Regression Analysis

          variable  ranking  selected
0      change_mgmt        4     False
1     project_plan        1      True
2   tech_mentoring        1      True
3         pm_tools        6     False
4      dev_process        7     False
5      system_arch        8     False
6     design_think        5     False
7      team_skills        1      True
8        core_team        1      True
9        prior_exp        2     False
10   rewards_recog        3     False

selected_var[selected_var.selected == True]
         variable  ranking  selected
1    project_plan        1      True
2  tech_mentoring        1      True
7     team_skills        1      True
8       core_team        1      True

Tutorial 5.6.7 RFECV:  Rank & Select optimum number of variables

RFECV (Recursive feature elimination with cross-validation) is used to select 
the best number of features

m=RFECV(estimator=Ridge(),step=1, importance_getter='coef_')
m.fit(X,y)

selected_var = pd.DataFrame()
selected_var ['variable'] = X.columns
selected_var ['ranking'] =  m.ranking_
selected_var ['selected'] = m.support_
selected_var[selected_var.selected == True]

         variable  ranking  selected
1    project_plan        1      True
2  tech_mentoring        1      True
7     team_skills        1      True
8       core_team        1      True
9       prior_exp        1      True

5.7  Polynomial Regression

If the relationship between the predictors and dependent variable is not lin-
ear, we may add additional ‘interaction’ terms to build a linear regression model. 
Though the underlying relationship is polynomial, it may be modeled using the 
above technique in some cases. Assume that we have two variables, x and y. If the 



1775.7 Polynomial Regression

relationship between them is not linear, we can introduce additional terms such as 
x2, y2, and xy as additional terms called interaction terms. We can model the rela-
tionship with a quadratic equation as shown below.

The above equation can be considered as a linear relationship involving five 
variables, x, y, x2, y2, and xy. Similarly, if the relationship between x and y is a 
polynomial of higher degree, that can be modeled by including more interaction 
terms, such as x3, y3, x2y, and xy2.

Tutorial 5.7   Polynomial Regression

Tutorial 5.7.1 Diamonds - Data Pre-processing

import seaborn as sb
d  = sb.load_dataset('diamonds')
d  = d.dropna()

d['cuti']=d.cut.astype("category").cat.codes
d['colori']=d.color.astype("category").cat.codes
d['clarityi']=d.clarity.astype("category").cat.codes

X = d[['carat', 'cuti', 'colori', 'clarityi',
       'depth','table', 'x', 'y', 'z']]
y = d.price

Tutorial 5.7.2 Diamonds - OLS Linear Regression

from scipy import stats 

Standardize features using zscore transformation
Xz = stats.zscore(X)

Add an intercept column Xz['intercept'] = 1, or standardise y
y = stats.zscore(y)  

Perform OLS linear regression
import statsmodels.api as sm  # for regression
model = sm.OLS(y,Xz,missing='drop').fit()
model.rsquared  # 0.907

Tutorial 5.7.3 Polynomial Regression

from sklearn.linear_model import LinearRegression 
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from scipy import stats 

(x+ y)2 = x
2 + 2xy+ y

2



178 5 Regression Analysis

Do Datasetup as shown in 5.14.1. Standardize the features
Xz = stats.zscore(X)

y = stats.zscore(y)  

Create polynomial features X^2
polynomial = PolynomialFeatures(degree=2, include_bias=False) 
XzPoly = polynomial.fit_transform(Xz)

Fit the linear regression 
model = LinearRegression().fit(XzPoly, y)

Perform Polynomial Regression
model.score(XzPoly, y)  # 0.963 (R2)  

Explanatory power of polynomial regression (R2 = 0.963) is observed to be 
higher compared to linear regression (R2 = 0.907)

Summary

Correlation is a measure of the nature and strength of association between two 
variables. Pearson correlation coefficient (or product-moment correlation), r, indi-
cates the linear association between two metrics (interval or ratio scaled) variables. 
r varies between −1 and +1.

Regression analysis examines associative relationships between a metric 
dependent variable (y) and one or more independent variables (X). We look for a 
solution that minimizes the error between the observed value of y and the value 
estimated from the equation y = f(X). The most popular method is to minimize the 
sum of squared errors. The Gauss-Markov theorem asserts that the ordinary least 
squares (OLS) estimator exhibits the smallest sampling variance among linear 
unbiased estimators when the errors in the linear regression model are uncorre-
lated, have equal variances, and have an expectation value of zero.

The coefficient of determination R2 is an indication of the strength of the asso-
ciation of y and x. It is the ratio of the explained variation to the total variation 
(sum of squares regression/sum of squares regression + sum of squares residual). 
R2 needs to be adjusted for the number of independent variables (k) and the sample 
size (n).

In the regression analysis procedure, we inspect (Hair et al. 2010) the p-value 
of the F-statistic for significance, (Levin 2011) the level of significance of the ‘t’ 
statistic of the coefficients ‘bi’, (Sundararajan 2023) the coefficient of determina-
tion, (Sundararajan et al. 2019) the regression model, (Sundararajan et al. 2019) 
the autocorrelation of the observations for acceptable limits, (Zaki and Meira 
2014) skewness/kurtosis of the dependent variable for acceptable limits, [7] the 



179Summary

variance inflation factor (VIF) of each variable for acceptable limits, [8] the resid-
ual plot for homoscedasticity, [9] the partial regression plots of the independent 
variables with the dependent variable for homoscedasticity, and [10] the relative 
importance of the independent variables.

There are many methods for data standardization: min–max, z-score, decimal 
scaling, etc. Z-score standardization is popularly used in statistical data mining.

Multicollinearity arises when intercorrelations among the predictors are very 
high. The Variance Inflation Factor (VIF) is a measure of multicollinearity. VIF 
is directly related to the tolerance value (VIF = 1/Tolerance). A value around <5 
is acceptable in social science research. Multicollinearity gives rise to many chal-
lenges such as skewing of the estimates and skewing of the relative importance of 
the independent variables. One of the solutions is principal components analysis to 
transform highly correlated variables into fewer components.

Autocorrelation is the similarity over a sequence of observations or the obser-
vations in a time series. It can lead to underestimates of the standard error and 
result in the misjudgment of the significance of the predictors. The Durbin-Watson 
test statistic provides an assessment of autocorrelation. A value around ‘2’ is 
acceptable.

Homoscedasticity assumes that the variance of the error term is constant. It is 
an important assumption in many multivariate techniques.

The partial correlation coefficient is a measure of the strength of the associa-
tion of a single independent variable with the dependent variable when the effects 
of the other independent variables in the model are held constant. It measures the 
incremental predictive effect of an independent variable.

Part correlation is a measure of the strength of the association of a single inde-
pendent variable with the dependent variable when the effect of the other inde-
pendent variables in the regression model is removed.

Akaike information criterion (AIC) is an indicator of model fit. It is used for 
comparing models. According to this criterion, the model that explains the highest 
amount of variation using minimum possible independent variables is the best fit 
model. The lower the AIC, the better the model.

Stepwise regression is a method for discarding independent variables that 
are not significant. The independent variables are entered or removed from the 
regression equation one at a time, based on the effect on R2. The partial correla-
tion coefficient is a good measure for variable selection. In the backward regres-
sion method, we start with all the independent variables in the model and remove 
the variables from the regression equation, one at a time. In the forward method, 
we start adding independent variables to the regression equation, one at a time. 
Multicollinearity is a major challenge in variable selection.

We may need to rank and select fewer variables based on criteria such as the 
partial regression coefficient or p-value associated with the t statistic, etc. The 
features can be handpicked if there are only a few of them. However, if there are 
numerous features, we may automate the process.



180 5 Regression Analysis

If the relationship between the predictors and dependent variable is not linear, 
we may add additional ‘interaction’ terms to build an effective regression model. 
Though the underlying relationship is polynomial, it may be thus modeled as a 
linear model.

Questions

Comprehension

1. State how correlation and covariance are related?
2. Provide applications for multiple linear regression.
3. Explain polynomial regression with an example.
4. Define standardized regression equation and its application.
5. Define the coefficient of multiple regression.
6. Compare the partial correlation coefficient with the partial regression 

coefficient.
7. State and explain the hypothesis in testing the overall significance of the mul-

tiple regression model.
8. Explain the objective in examining residuals.
9. Write a note on multicollinearity. How does multicollinearity affect prediction 

accuracy?
10. Write a brief note on the approach to assess the relative importance of pre-

dictors in multiple regression. Mention the approaches one may take in the 
regression analysis of a model with several variables.

11. Explain a linear regression model in mathematical terms.
12. Mention the assumptions underlying linear regression.
13. Write a brief note on data validation in Regression Analysis.
14. Write a note briefly mentioning each of the 10 steps in the multiple regression 

analysis procedure.
15. Describe stepwise regression analysis.

Application

16. You are working on a real estate dataset to predict house prices. What inde-
pendent variables (features) would you consider including in a multiple linear 
regression model, and why?

17. You are analyzing a dataset of stock prices over time. How would you address 
the issue of autocorrelation, and why is it important in this context?

18. Given a dataset with several highly correlated independent variables, describe 
the steps you would take to mitigate multicollinearity before building a multi-
ple linear regression model.



181Exercises

Exercises

Exercise 5.1 Correlation Plot
Determine the strength and significance of the association between the following 
variables. Also, plot the joint distribution.

project_plan = [5, 2, 4, 4, 3, 5, 2, 2, 4, 2, 4, 4, 4, 4, 3]
project_outcome = [3, 2, 5, 3, 2, 6, 1, 2, 5, 2, 3, 4, 3, 3, 4]

Exercise 5.2 Regression Plot
Compute the coefficient of determination for the following variables, and the sig-
nificance of their association. Also plot the joint distribution.

independent variable: project_plan = [5, 2, 4, 4, 3, 5, 2, 2, 4, 2, 4, 4, 4, 4, 3]
dependent variable: project_outcome = [3, 2, 5, 3, 2, 6, 1, 2, 5, 2, 3, 4, 3, 3, 4]

Exercise 5.3 Regression Analysis
Do a regression analysis on the ‘mpg’ dataset to determine the factors that deter-
mine mileage. The dataset can be accessed from seaborn library.

Exercise 5.4 Multicollinearity
Consider the regression analysis of the ‘mpg’ dataset done in Exercise 5.3. 
Comment on the multicollinearity of the independent variables involved in 
regression.

Exercise 5.5 Relative importance of the predictor variables
Consider the regression analysis of the ‘mpg’ dataset done in Exercise 5.3. 
Comment on the relative importance of the variables.

Exercise 5.6 Residual Plot
Consider the regression analysis of the ‘mpg’ dataset done in Exercise 5.3. Plot the 
‘residual plot’ and interpret the plot.

Exercise 5.7 Partial correlation plots
Consider the regression analysis of the ‘mpg’ dataset done in Exercise 5.3. Plot the 
‘partial correlation plots’ and interpret the plots.

Exercise 5.8 Rank and Select a specific number of parameters automatically
Consider the dataset ‘mpg’. Show a method for selecting a specific number of 
independent variables that determine the mileage.

Exercise 5.9 Identify the optimum number of parameters automatically
Consider the dataset ‘mpg’. Show a method for selecting a specific number of 
independent variables that determine the mileage.

Exercise 5.10 Perform regression analysis to predict diamond prices
See Sect. 1.6 for a brief description of the diamonds dataset. Build a regression 
model using the ‘diamonds’ dataset to predict diamond prices. Perform detailed 
regression analysis.



182 5 Regression Analysis

Exercise 5.11 Regression Analysis of MPG
In a study of factors influencing the speed ('mpg') of old model cabs, the follow-
ing factors were identified as significant predictors: horsepower and weight. The 
results of the regression analysis are shown below. Interpret the results.

OLS Regression Results
==============================================================================
Dep. Variable: mpg R-squared: 0.706
Model: OLS Adj. R-squared: 0.705
Method: Least Squares F-statistic: 467.9
Date: Fri, 01 Oct 2021 Prob (F-statistic): 3.06e-104
Time: 17:44:24 Log-Likelihood:                -1121.0
No. Observations: 392 AIC: 2248.
Df Residuals: 389 BIC: 2260.
Df Model: 2
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------ 
horsepower    -0.0473 0.011     -4.267 0.000      -0.069      -0.026
weight        -0.0058 0.001    -11.535 0.000      -0.007      -0.005
intercept 45.6402 0.793 57.540 0.000 44.081 47.200
==============================================================================
Omnibus: 35.336 Durbin-Watson: 0.858
Prob(Omnibus): 0.000 Jarque-Bera (JB): 45.973
Skew: 0.683 Prob(JB): 1.04e-10
Kurtosis: 3.974 Cond. No. 1.15e+04
==============================================================================

References

Hair JF, Black WC, Babin BJ, Anderson RE (2010) Multivariate data analysis. Vectors. https://
doi.org/10.1016/j.ijpharm.2011.02.019

Levin R (2011) Statistics for management. The Statistician (1). https://doi.org/10.2307/2348398
Malhotra NK (2020) Marketing research an applied prientation, 7th edn. Pearson Education
Sundararajan S (2023) MVA-ML. https://github.com/sun-sri/MVA-ML
Sundararajan S, Marath B, K. Vijayaraghavan P (2019) Variation of risk profile across software 

life cycle in IS outsourcing. Softw Qual J 27(4). https://doi.org/10.1007/s11219-019-09451-8
Zaki MJ, Meira W (2014) Data mining and analysis: fundamental concepts and algorithms. 

Cambridge University Press

http://dx.doi.org/10.1016/j.ijpharm.2011.02.019
http://dx.doi.org/10.1016/j.ijpharm.2011.02.019
http://dx.doi.org/10.2307/2348398
https://github.com/sun-sri/MVA-ML
http://dx.doi.org/10.1007/s11219-019-09451-8


183

Learning Objectives

• Understand the basic concepts and principles of classification.
• Demonstrate primary classification methods such as logistic regression, linear 

discriminant analysis (LDA), decision trees, and support vector machines, and 
demonstrate their usage through Python-based programs.

• Acquire familiarity with other classification methods—Bayes classification 
methods, Bayesian belief network, rule-based classification, K nearest neigh-
bors, backpropagation, and genetic algorithms.

Overview

The chapter begins with a discussion of the principles and concepts of clas-
sification—an overview of popular classification methods, metrics, and model 
performance. We then explore various classification methods such as logistic 
regression, linear discriminant analysis (LDA), decision trees, and support vec-
tor machines. We will demonstrate these methods through Python-based tutorials. 
We end the chapter with a cursory glance at other classification methods—Bayes 
classification, Bayesian belief network, rule-based classification, K nearest 
neighbors, backpropagation, and genetic algorithms. Classification is further dis-
cussed in the Chapters ‘Machine Learning’ and ‘Artificial Intelligence and Deep 
Neural Networks’. The learnings in this chapter give a solid foundation for those 
discussions.

Chapter 6
Classification

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_6

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_6.

https://doi.org/10.1007/978-981-99-0353-5_6#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_6&domain=pdf


184

Definitions

Backpropagation: A neural network learns by adjusting the weights to optimize its 
ability to predict the class labels correctly.
Bayesian belief network: Multi-collinearity of features is a major challenge in 
multivariate analysis. Bayesian belief networks are probabilistic graphical models 
that represent dependencies among subsets of features and are modeled on joint 
conditional probability distributions.
Classification: Classification is an extensively used statistical technique in data 
mining. It is used for the prediction of categorical class labels.
Decision tree: A decision tree is a collection of nodes arranged as a binary tree. 
The interior nodes evaluate a logical condition for classification. The leaf nodes 
carry the actual data.
F1-score: The common performance measures for a classifier include—precision, 
recall, and F1-score. The F1-score or F score is the harmonic mean of precision 
and recall. F1 Score = 2PR / (P + R).
Genetic algorithms: Genetic algorithms lend themselves well to parallelization. 
They find applications in classification and diverse optimization problems. In data 
mining, they can additionally be utilized to appraise the efficacy of alternative 
algorithms.
Gini index: In practice, we come across data with numerous feature variables, and 
there is a need to identify, rank, and select the vital ones. Information Gain and 
Gini index are popular measures for selecting the best features.
Kernel functions: Support vector machines (SVM) use nonlinear mapping to trans-
form the original training data into a higher dimension to make classification fea-
sible. The data transformation functions used by SVM are called Kernel functions, 
which include a variety of functions such as polynomial, radial basis function 
(RBF), and sigmoid.
KNN (K nearest neighbors): The nearest neighbor maintains a set of training data 
points described by n features or dimensions. Given an unknown tuple, a K nearest 
neighbor classifier searches for K nearest training data points. Nearness is meas-
ured using a distance metric, such as Euclidean distance.
Linear discriminant analysis: Linear discriminant analysis (LDA) is a technique 
for analyzing data when the target variable is categorical and the features are 
numeric. If there are c target classes, we need a maximum of c-1 discriminant 
functions using the feature variables, which will best discriminate between the tar-
get categories.
Logistic regression: Binary logistic regression uses a set of numeric features for a 
two-way classification. This can be extended for multi-class classification; if we 
have c classes, we need a maximum of c-1 classifiers.
Naive Bayes classification: Bayesian classifiers predict class membership proba-
bilities. Bayesian classifiers assume that the effect of a feature on classification is 
independent of the other features, which helps to simplify the computations. This 

6 Classification



185

assumption is called class conditional independence, leading to the ‘Naïve’ Bayes 
classification method.
Overfitting: A decision tree may grow into too many branches. This may be 
attributable to noise or outliers, among other reasons. Such overfitting causes 
poor accuracy for unseen samples. Moreover, the process may be computation-
ally prohibitive for big datasets. There are two approaches to avoid overfitting. In 
pre-pruning, we halt the brach construction early if the goodness of fit falls below 
a threshold. In post-pruning, we remove branches from a ‘fully grown’ tree.
Precision: The common performance measures for a classifier include—precision, 
recall, and F1-score. Precision represents the exactness—what percentage of the 
cases the classifier labeled as positive are positive? Precision = TP / (TP + FP).
Recall: The common performance measures for a classifier include—precision, 
recall, and F1-score. The recall is a measure of completeness—what percentage of 
positive cases did the classifier label as positive? Recall = TP / (TP + FN).
Rule-based classification: If the conditions in the intermediate nodes of a decision 
tree are written as {if … then … else} rules, it is called rule-based classification. 
One rule is created for each path from the root to a leaf. Rules must be mutually 
exclusive and collectively exhaustive.
Stepwise discriminant analysis: In stepwise discriminant analysis, the features 
are entered (or removed) one after the other based on their ability to discriminate 
between the groups.
Support vector machines: Support vector machines (SVM) employ a nonlin-
ear mapping to convert the initial training data into a higher dimensional space. 
A hyperplane can always be identified by employing a suitable mapping to an 
adequately high dimensionality to effectively separate the data from two classes. 
SVM accomplishes the determination of this hyperplane by utilizing support vec-
tors and margins. Support vectors, denoting the data points close to the decision 
boundary, play a crucial role in defining the margins.
Tree pruning: See overfitting.

6.1  Introduction

Classification is an extensively used statistical technique in data mining. It is 
used for the prediction of categorical class labels. A regression model uses contin-
uous-valued functions for numeric prediction—e.g., sales. A classification model 
predicts categorical (discrete or unordered) class labels—e.g., credit/loan approval, 
fraud detection, and medical diagnosis. See Fig. 6.1.

There are various classification methods and researchers, and newer methods 
are emerging for classifying big data and network graphs. Some of the popular 
methods are listed below.

6.1 Introduction



186 6 Classification

Fig. 6.1  Numeric prediction and classification

• Binary Logistic Regression/Two-Way Classification.
• LDA—Linear Discriminant Analysis.
• Bayes Classification Methods.
• Decision Tree Induction.
• SVM—Support Vector Machine.
• Rule-Based Classification.
• Bayesian Belief Network.
• KNN (K Nearest Neighbors).
• Backpropagation (Neural networks).
• Genetic Algorithms.

Let us consider a simple classification example. The iris dataset consists of 
measurements on 150 iris flowers belonging to three categories—setosa, versi-
color, and virginica. Four features are measured—length and width of sepals and 
petals. Based on the features, can we classify a flower into the correct category? 
We will explore that using various classification methods. A visual description of 
the data is given in Fig. 6.2, and the corresponding Python code is provided below.

Tutorial 6.1   The Iris Flowers Data Description 

import pandas as pd
import seaborn as sb
pdf = sb.load_dataset('iris')
import matplotlib.pyplot as plt

pdf.info()
sb.set(font_scale = 1.5)

# probability density function of all variables, super-imposed
pdf.plot(kind='kde')  



187

(a) Prob. Density of the 4 Measures (b) Sca�er - Petal Length x Petal Width

(c ) Sca�er - Sepal Width x Petal Length (d) Sca�er - Sepal Width x Petal Width

Fig. 6.2  The Iris flowers data description

sb.scatterplot(x='petal_length', y='petal_width', data=pdf, hue='species')
sb.scatterplot(x='petal_length', y='sepal_width', data=pdf, hue='species')

sb.scatterplot(x='petal_width',  y='sepal_width', data=pdf, hue='species')

6.2  Binary Logistic Regression

Binary logistic regression is a classification method that uses a set of numeric 
features for a two-way classification. This can be extended for use in multi-class 
classification.

Assume a binary classification problem with the target y ∊ {0, 1}. Assume k fea-
tures (or variables or predictors) X1 … Xk, and associated coefficients b1 … bk

6.2 Binary Logistic Regression



188 6 Classification

In the equation above, ‘z’ can take any real value. To use ‘z’ for binary 
classification, we may map the value of ‘z’ to {0,1} by inverse logarithmic 
transformation.

where
P(y=1) is the probability that the input belongs to class ‘1’,
z is the score or logit.
More specifically, inverse logit or sigmoid function can be expressed as 

follows:

We make use of the sigmoid transformation for binary logistic regression. In 
binary logistic regression, the target y ∊ {0, 1}. Assume that ŷ is the best estimate 
of y. We can express ŷ as follows:

The parameters (bi) of the logit model are estimated using the method of max-
imum likelihood (Note that the bi's are computed from the data sample and they 
are expected to be the best estimates of the population parameters βi’s). Logit, 
Sigmoid (or inverse logit), and Binary logistic regression method are diagrammati-
cally depicted in Fig. 6.3.

Logistic regression is a binary classification algorithm that models the prob-
ability of an observation belonging to one of two classes. This can be extended 
for multi-class classification. Let us take a look at two popular approaches. In the 
One-vs-All (OvA) or One-vs-Rest (OvR) approach, we create a separate binary 
logistic regression model for each class in the dataset. For each model, one class 
is treated as the ‘positive’ class, and all other classes are grouped as the ‘negative’ 
class. During prediction, we apply all the models to an input. The class associated 
with the model that gives the highest probability is chosen as the predicted class.

In softmax regression (multinomial logistic regression), a single logistic regres-
sion model is used—but modified to handle multiple classes directly. Instead of 
modeling a binary outcome (0 or 1), the model assigns a probability to each class 
and then normalizes these probabilities using the softmax function. The softmax 
function ensures that the probabilities sum up to 1, and the class with the high-
est probability is selected as the prediction. This approach is suitable for problems 
with a larger number of classes. This method is extensively used in machine learn-
ing. Softmax function returns a vector of probabilities of an object belonging to 
each class as expressed by

P(y = i) = e−zi

∑k
j=1 e

zj

z = b0 + b1X1 + b2X2 + · · · + bkXk

P(y = 1) =
1

1+ e−z

P(y = 1|Xi, bi) =
1

1+ e−z

ŷ = 1, if P(y = 1|Xi,βi) ≥ 0.5; ŷ = otherwise



189

(a) Logit (b) Sigmoid Func�on & Decision Boundary

Fig. 6.3  Logit function and inverse logit (or sigmoid) function

where
P(y=i) is the probability that the input belongs to class i,
zi is the score or logit associated with class i,
k is the total number of classes.

6.3  Model Performance

A classifier must be able to predict the class label of unknown objects precisely. 
There are several measures to rate the performance of a classifier. Table 6.1 shows 
some commonly used measures. Tutorial 6.2 demonstrates an example.

• Precision: Precision represents the exactness—what percentage of the cases the 
classifier labeled as positive are actually positive? Precision = TP / (TP + FP).

• Recall: Recall is a measure of completeness—what percentage of positive cases 
did the classifier label as positive? Recall = TP / (TP + FN).

• F1-score: The F1-score or F score is the harmonic mean of precision and recall. 
F1 Score = 2PR / (P + R) (Table 6.1).

A trained classifier must be robust and accurate in predicting unknown 
objects. The following methods assess and improve a model’s prediction accu-
racy—cross-validation and ensemble. Cross-validation aims to assess the perfor-
mance and generalisability of a single machine learning model—to foresee how 
well a model may perform on unseen data and identify potential issues like over-
fitting or underfitting. It involves splitting the training dataset into multiple sub-
sets or ‘folds’ to train and test the model iteratively. Ensemble methods combine 
the predictions of multiple base machine learning models to create a more robust 
and accurate predictive model. A detailed discussion on this topic is available in 
Sect. 11.6.5, Ensemble Methods (Table 6.2).

6.3 Model Performance

http://dx.doi.org/10.1007/978-981-99-0353-5_11


190 6 Classification

Table 6.1  Performance measurement in classification models

Predicted Labels

1 0

Observed
Labels

1 True Positives 
(TP)

False Negatives (FN) R (Recall) =  TP / (TP + FN)
True Positive Rate

0 False Positives 
(FP)

True Negatives (TN) F1 Score  = 2PR / (P + R)

P (Precision) = 
TP / (TP + FP) 

Accuracy = (TP + TN)/ 
(TP + TN + FP + FN)

Support = (TP + TN + FP + FN)

Table 6.2  Calculation of precision and recall

Predicted class Actual Class Recall (R) = 

Versicolor Not Versicolor

Versicolor 47 3 50 47 / 50 = 0.94

Not Versicolor 0 50 (Row wise Ratio)

Total 47

Precision (P) = 47 / 47 = 1 (Column-wise ratio)

Tutorial 6.3.1 Binary Logistic Regression 

In this tutorial, we are using the binary logistic regression method for 
classifying iris flowers into two categories – versicolor and virginica

import pandas as pd
import seaborn as sb
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix

d = sb.load_dataset('iris')
d.info()

d.columns 
# 'sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'

d.species.unique() # 'setosa', 'versicolor', 'virginica'

Select data pertaining to two classes - versicolor, virginica
d2class = d[(d.species=='versicolor') | (d.species=='virginica')]

Load X with the four features 
X = d2class[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]

Load y with the target labels – 'species' 
y = d2class.species



191

Setup the classifier
model = LogisticRegression(solver='liblinear', random_state=0)

Train the model
model.fit(X, y)

model.classes_       # ['versicolor', 'virginica']

model.coef_.round(2) # [-1.71, -1.53,  2.47,  2.56]
[-1.71, -1.53, 2.47, 2.56] are the coefficients (b1, b2, b3, b4) corresponding 
to the four features x1,x2,x3,x4

model.intercept_.round(3) # [-1.216] # intercept or b0

confusion_matrix(y, model.predict(X))
array([[47,  3], # 47 versicolor flowers classified correctly 

       [ 0, 50]   #  3 versicolor flowers classified wrongly

F Score = 2*P*R / (P + R) = 2*1* 0.94 / (1 + 0.94) = 0.97

print(classification_report(y, model.predict(X)))

                   precision    recall  f1-score  support
  versicolor            1.00      0.94     0.97       50
   virginica            0.94      1.00     0.97       50
    accuracy (overall)                     0.97      100
   macro avg (overall)  0.97      0.97     0.97      100
weighted avg            0.97      0.97     0.97      100

Weightage is given based on support (sample size). Here 50 instances each of 
versicolor and virginica are selected; so, the weights are equal. This is 
reflected in the ‘weighted avg’. 

Tutorial 6.3.2 Logistic Regression – Multi-class classification

import pandas as pd
import seaborn as sb
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix

d = sb.load_dataset('iris')
d.info()
d.columns
d.species.unique() # 'setosa', 'versicolor', 'virginica'

X = d[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]
y = d.species

model = LogisticRegression(solver='liblinear', random_state=0)
model.fit(X, y)

6.3 Model Performance



192 6 Classification

model.classes_       # ('setosa', 'versicolor', 'virginica')
model.coef_.round(2)
[[ 0.41,  1.46, -2.26, -1.02],   Logistic discriminant function-1 coeff 
 [ 0.43, -1.61,  0.58, -1.41],   Logistic discriminant function-2 coeff 
 [-1.71, -1.53,  2.47,  2.56]])  Logistic discriminant function-3 coeff 

model.intercept_.round(3) # [ 0.264,  1.094, -1.215] 
The intercepts corresponding to the three logistic discriminant functions 

confusion_matrix(y, model.predict(X))
array([[50,  0,  0],
       [ 0, 45,  5],
       [ 0,  1, 49]])

print(classification_report(y, model.predict(X)))
              precision    recall  f1-score   support
      setosa       1.00      1.00      1.00        50
  versicolor       0.98      0.90      0.94        50
   virginica       0.91      0.98      0.94        50

    accuracy                           0.96       150

6.4  Linear Discriminant Analysis (LDA)

Discriminant analysis is a technique for analyzing data when the target variable 
is categorical and the features are numeric. If there are c target classes, we need a 
maximum of c-1 discriminant functions to discriminate between the target cate-
gories (Malhotra 2020). Assume that we have k feature variables (Xi … Xk). The 
discriminant analysis model can be expressed as follows:

where

Di is the discriminant score for ith discriminant function,

bi's are the discriminant coefficients or weights in the ith discriminant function,

Xi's are the ith feature variable.

The coefficients, or weights (b), are estimated so that the groups differ as much 
as possible. This occurs when the ratio of the between-group sum of squares to the 
within-group sum of squares for the discriminant function is maximum.

We may include all the features in the discriminant function. Alternatively, we 
may include only vital features. This can be achieved through stepwise discrimi-
nant analysis, which is analogous to stepwise multiple regression. In this method, 
the features are entered (or removed) one after the other based on their ability to 
discriminate between the groups. We analyze variance for each feature, taken one 

Di = b0 + b1X1 + b2X2 + ...+ bkXk



193

at a time, considering the target variable as the category or grouping variable. The 
discriminant function includes the feature with the highest F ratio, given that it 
is statistically significant. Following this, the next feature is added based on the 
highest adjusted F ratio, considering all the features, including those previously 
selected. This iterative process persists until all feature variables are encompassed.

Tutorial 6.4.1 Linear Discriminant Analysis

In this tutorial, we are using the linear discriminant analysis method for  
classifying iris flowers

import pandas as pd
import seaborn as sb
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.metrics import classification_report, confusion_matrix

d = sb.load_dataset('iris')
d.info()

X = d[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]
y = d.species

Setup LDA classifier
model = LinearDiscriminantAnalysis(solver='svd')

Notes on Solver
‘svd’:   Singular value decomposition (default). 
         SVD does not compute the covariance matrix. So, this solver is 
         recommended for data with a large number of features.
‘lsqr’:  Least squares solution. 
         Can be combined with shrinkage or a custom covariance estimator
‘eigen’: Eigenvalue decomposition. 
         It can be combined with shrinkage or a custom covariance estimator.

Train the LDA classifier
model.fit(X, y)

model.classes_  # ['setosa', 'versicolor', 'virginica']

Coefficients of the Discriminant Function 1 
model.coef_.round(2)
array([[  6.31,  12.14, -16.95, -20.77],  
       [ -1.53,  -4.38,   4.7 ,   3.06],  # Discriminant function1 Coeff
       [ -4.78,  -7.76,  12.25,  17.71]]) # Discriminant function1 Coeff

The intercepts for the three discriminant functions 
model.intercept_.round(3) 
# [-15.47, -2.02, -33.53] 

confusion_matrix(y, model.predict(X))
array([[50,  0,  0],   all setosa flowers were correctly classified
       [ 0, 48,  2],   two versicolor flowers were wrongly classified
       [ 0,  1, 49]])  one virginica  flower is wrongly classified

6.4 Linear Discriminant Analysis (LDA)



194 6 Classification

Fig. 6.4  Complete decision tree diagram

print(classification_report(y, model.predict(X)))
              precision    recall  f1-score   support
      setosa       1.00      1.00      1.00        50
  versicolor       0.98      0.96      0.97        50
   virginica       0.96      0.98      0.97        50
    accuracy                           0.98       150

6.5  Decision Trees

The decision tree method uses a tree-based classification approach using cate-
gorical or metric attributes for node split.  We will discuss a simple algorithm that 
generates a binary tree using metric attributes.

6.5.1  The Basic Decision Tree Algorithm

A binary decision tree is a collection of nodes arranged as a binary tree. The 
tree has a root node. From every node, two branches emerge. The terminal nodes 
are called leaves, all other nodes are called interior nodes. The interior nodes eval-
uate a logical condition for classification. If the condition is true, we traverse to 
the left branch; otherwise to the right branch. Tree traversal ends in a leaf node. 
The leaf nodes carry actual data. See Fig. 6.4.



195

|--- pl <= 2.45
|   |--- class: setosa
|--- pl >  2.45
|   |--- pw <= 1.75
|   |   |--- pl <= 4.95
|   |   |   |--- pw <= 1.65
|   |   |   |   |--- class: versicolor
|   |   |   |--- pw >  1.65
|   |   |   |   |--- class: virginica
|   |   |--- pl >  4.95
|   |   |   |--- pw <= 1.55
|   |   |   |   |--- class: virginica
|   |   |   |--- pw >  1.55
|   |   |   |   |--- pl <= 5.45
|   |   |   |   |   |--- class: versicolor
|   |   |   |   |--- pl >  5.45
|   |   |   |   |   |--- class: virginica
|   |--- pw >  1.75
|   |   |--- pl <= 4.85
|   |   |   |--- sw <= 3.10
|   |   |   |   |--- class: virginica
|   |   |   |--- sw >  3.10
|   |   |   |   |--- class: versicolor
|   |   |--- pl >  4.85
|   |   |   |--- class: virginica

(a) Decision Tree Diagram (b) Decision Tree Rules

Fig. 6.5  Decision tree diagram and corresponding rules

We aim to classify iris flowers into three labels—setosa, versicolor, and virg-
inica, using four features—length and width of sepals and petals. The root node 
evaluates the condition—is the petal length <  = 2.45 cm? If the condition is true, 
we traverse to the left branch; otherwise to the right branch. The leaf node carries 
a subset of data and the associated target label (setosa, versicolor, and virginica).

If all the data in the leaf belong to one category label, then we will call the leaf 
a pure node. The purity of leaf nodes increases with depth. If the classifier is 100% 
accurate, the full-blown tree’s leaves will all be pure. Conditions for terminating 
the tree build are as follows:

• All samples in all leaf nodes are pure (belong to the same class).
• Split a node only if it results in a sufficient reduction in impurity.
• Set a minimum number of samples to create a leaf node.
• There are no samples left.

However, exhaustive tree construction may lead to overfitting. Moreover, the 
process may be computationally prohibitive for big datasets. Therefore, the tree 
needs to be pruned. This is discussed later (Fig. 6.5).

6.5 Decision Trees



196 6 Classification

6.5.2  Feature Selection

The classifier accuracy is determined by the constituent features—how com-
prehensively the given set of features defines the phenomena at hand and whether 
the features are uncorrelated. In practice, we come across data with numerous fea-
ture variables, and there exists a need for identifying, ranking, and selecting the 
vital ones. Assume a dataset D, of class-labeled data objects. To build a decision 
tree, we must split D into subsets based on a split criterion. The ultimate objec-
tive is to get pure partitions (all the data in a subset belong to one category label). 
Information Gain and the Gini index are some of the popular measures to select 
the best feature for the next node split. The Gini index is costly when the number 
of classes is large. Those not particular about mathematical insights may skip the 
rest of this sub-section and proceed to ‘Overfitting and Tree Pruning’.

Information Gain

Consider a classification problem where each object is characterized by a set of 
features {A … K}. Assume that there are ‘m’ distinct classes. Ci (i = 1, …, m). Let 
D be a dataset of labeled objects to be classified.

The probability ‘pi’ that an object in D belongs to class Ci.
 = Number of objects of Class-i in D / Number of objects in D

The following equation (Jiawei Han, Micheline Kamber, 2014) gives the infor-
mation needed to classify an object. Info (D) is also called Entropy.

Assume we used feature ‘A’ to partition D into v partitions. Information needed 
for further classification can be expressed as follows:

Based on the above equation, information gained from using feature ‘A’ for 
classification can be expressed as follows:

From the given set of features {A … K}, select the feature that lends the maxi-
mum Information Gain. Use the selected feature for classification. Repeat the pro-
cess with the rest of the features until optimal classification is achieved.

pi =
|Ci, D|

|D|

Info(D) =

m∑

i=1

pilog2
(
pi
)

InfoA(D) =

v∑

j=1

Dj

D
Info(Dj)

Gain(A) = Info(D)− InfoA(D)



197

Gini Index

Consider a classification problem where each object is characterized by a set of 
features {A … K}. Assume that there are ‘m’ distinct classes. Ci (i = 1, …, m). Let 
D be a dataset of labeled objects to be classified.

The probability ‘pi’ that an object in D belongs to class Ci.
 = Number of objects of Class-i in D / Number of objects in D

The Gini index measures the impurity of D as expressed below (Jiawei Han, 
Micheline Kamber, 2014):

Consider that feature A splits D, the set of objects, into two partitions D1 
and D2. After the split using feature A, the Gini index of D can be expressed as 
follows:

After the partitioning of D using feature A, the reduction in impurity can be 
expressed as follows:

From the given set of features {A … K}, select the feature that provides the 
largest reduction in impurity. Use the selected feature for classification. Repeat the 
process with the rest of the features until optimal classification is achieved.

6.5.3  Overfitting and Tree Pruning

Overfitting: A decision tree may grow into too many branches. This may be 
attributable to noise or outliers, among other reasons. Such overfitting causes 
poor accuracy for unseen samples. Moreover, exhaustive tree construction or tree 
access is computationally prohibitive for big datasets. This necessitates tree prun-
ing, which can be done during or after tree construction. Two approaches to avoid 
overfitting are pre-pruning and post-pruning.

Pre-pruning: Halt tree construction early. Do not split a node if this would 
result in the goodness of fit measure falling below a threshold. The challenge here 
is to determine an appropriate threshold.

pi =
|Ci, D|

|D|

ini(D) = 1−

m∑

i=1

(pi)2

GiniA(D) =
|D1|

|D|
Gini(D1)+

|D2|

|D|
Gini(D2)

�Gini(A) = Gini(D)− GiniA(D)

6.5 Decision Trees



198 6 Classification

Post-pruning: Remove branches from a ‘fully grown’ tree and get a progres-
sively pruned tree. We may set apart some data from the training process and use it 
for testing and identifying the best-pruned tree.

6.5.4  Various Decision Tree Algorithms

There are several decision tree algorithms used in machine learning and data 
mining. Some of them are mentioned below.

ID3 is one of the earliest decision tree algorithms. It uses information gain to 
select the best attributes for splitting a node. However, it prefers attributes with 
many values and uses only categorical attributes for node split. The algorithm 
‘C4.5’ is an improved version of ID3 that uses gain ratio as a criterion for attribute 
selection. This algorithm can also use continuously valued attributes and handle 
both classification and regression tasks.

CART (Classification and Regression Trees) is another widely used decision 
tree algorithm. It constructs binary trees using the Gini impurity for classification 
and mean squared error (MSE) for regression as the node splitting criteria. CART 
is known for its flexibility and ability to handle various data types.

CHAID (Chi-squared Automatic Interaction Detector) is primarily used for cat-
egorical data and uses chi-squared tests to find significant associations between 
attributes and the target variable. It can handle both classification and regression 
tasks.

Random Forrest is an ensemble method (discussed in Sect. 11.6.5) that com-
bines multiple decision trees to improve predictive accuracy and reduce overfit-
ting. XGBoost (Extreme Gradient Boosting) and LightGBM are some of the 
other gradient-boosting frameworks that use decision trees as base learners. They 
are optimized for speed and are scalable (work on large datasets efficiently). 
CatBoost: CatBoost is a gradient-boosting algorithm focusing on categorical fea-
ture handling.

Tutorial 6.5   Decision Tree Classification

In this tutorial, we are using the decision tree method for classifying iris 
flowers

Tutorial 6.5.1 Decision Tree Classification Report

import pandas as pd
import seaborn as sb
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import classification_report, confusion_matrix

d = sb.load_dataset('iris')
d.info()



199

X = d[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]
y = d.species

model = DecisionTreeClassifier()
model.fit(X, y)

model.classes_       # ['setosa', 'versicolor', 'virginica']

confusion_matrix(y, model.predict(X))
array([[50,  0,  0],
       [ 0, 50,  0],
       [ 0,  0, 50]])

print(classification_report(y, model.predict(X)))
              precision    recall  f1-score   support
      setosa       1.00      1.00      1.00        50
  versicolor       1.00      1.00      1.00        50
   virginica       1.00      1.00      1.00        50
    accuracy                           1.00       150

model.criterion  # 'gini'index measure for node splitting

model.feature_importances_.round(3)
([0.013, 0.013, 0.051, 0.923])
'petal_width'(1), 'petal_length'(2), 'sepal_length'(3), 'sepal_width'(3)

model.score(X,y) # 1.0 (100%)

Tutorial 6.5.2 Decision Tree Plot (simple)

import pandas as pd
import seaborn as sb
from sklearn.tree import DecisionTreeClassifier 

d = sb.load_dataset('iris')

X = d[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]
y = d.species

model = DecisionTreeClassifier()
model.fit(X, y)

from sklearn import tree
import matplotlib.pyplot as plt
plt.figure(figsize=(16,10),dpi=100, edgecolor='black', facecolor='white')

tree.plot_tree(model,fontsize=14)
See Figure 6-4: Complete Decision Tree Diagram

6.5 Decision Trees



200 6 Classification

Tutorial 6.5.3 Decision Tree Textual Description

from sklearn.tree import export_text

The model generated in Tutorial 6.5.2 Decision Tree Plot is used here
dtctext = export_text(model, feature_names=['sl', 'sw', 'pl', 'pw'])
print(dtctext)

See Figure 6-5 (b): Decision Tree Diagram

Tutorial 6.5.4 Decision Tree elegant Graph

Install Graphviz
You may refer to: https://scikit-learn.org/stable/modules/tree.html
And https://graphviz.org/

!pip install graphviz

import graphviz 

The model generated in the earlier Tutorial on Decision Tree is used here
tree_data =  tree.export_graphviz (model, out_file=None, max_depth=2,     
             feature_names=(['sl','sw','pl','pw']),  
             class_names=(['setosa', 'versicolor', 'virginica']),  
             filled=True, rounded=True,special_characters=True)
tree_graph = graphviz.Source(tree_data)  
tree_graph   # See  Figure 6-5 (a): Decision Tree Diagram

tree_graph.render("iris") # Tree written out to disk as pdf

6.6  Support Vector Machines

Support vector machines employ nonlinear mapping to convert the initial train-
ing data into a higher dimensional space. In this augmented dimensionality, SVM 
seeks an optimal linear separating hyperplane known as the ‘decision boundary’. 
Through an effective nonlinear mapping to a suitably high dimension, the data from 
two classes can consistently be separated by a hyperplane, as noted by (Deisenroth 
2020; Géron  2019). SVM identifies and defines this hyperplane using support vec-
tors and margins. Support vectors are data points on the decision boundary, cru-
cial in determining the optimal separation. The margins these support vectors define 
represent the spatial gaps or distances between the different classes (Fig. 6.6).

In Fig. 6.6, the dotted lines represent the margins. The blue and green points 
that touch the dotted line on the left and the orange points that touch the dotted 
line on the right are called support vectors. The thick line at the center is the opti-
mal hyperplane. The distance between the dotted lines is the ‘margin’. As we can 
imagine, infinite hyperplanes separate any two classes. SVM searches for the 
hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH).

https://scikit-learn.org/stable/modules/tree.html


201

Fig. 6.6  Support vectors, 
margins, and Kernel trick

The data transformation functions used by SVM are called Kernel functions, 
which include a variety of functions such as polynomial, radial basis function 
(RBF), and sigmoid. The decision hyperplanes used for nonlinear SVMs are sim-
ilar to some of the popular neural network classifiers. For example, an SVM with 
a Gaussian radial basis function (RBF) gives the same decision hyperplane as an 
RBF neural network (Jiawei Han, Micheline Kamber, 2014). An SVM with a sig-
moid Kernel is equivalent to a two-layer neural network called a multilayer per-
ceptron. Our tutorial will use the most popular Kernel function, RBF.

Transforming the data to higher dimensions can be costly if dimensions are 
high. The Kernel trick provides a practical solution for this. In this case, the Kernel 
function returns the inner product between two data points in a higher dimensional 
feature space.

Tutorial 6.6 Support Vector Classification

In this tutorial, we are using the support vector method for classifying 
iris flowers

import pandas as pd
import seaborn as sb
from sklearn.svm import SVC   # SVM Model Import
from sklearn.metrics import classification_report, confusion_matrix

d = sb.load_dataset('iris')

d.info()

X = d[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]
y = d.species

model = SVC(kernel = 'rbf')
model.fit(X, y)

model.classes_       # ['setosa', 'versicolor', 'virginica']
model.intercept_.round(3) # [0.126, -0.064, -0.107]

6.7 Other Classification Methods



202 6 Classification

confusion_matrix(y, model.predict(X))
array([[50,  0,  0],
       [ 0, 48,  2],
       [ 0,  2, 48]])

print(classification_report(y, model.predict(X)))
              precision    recall  f1-score   support

      setosa       1.00      1.00      1.00        50
  versicolor       0.96      0.96      0.96        50
   virginica       0.96      0.96      0.96        50
    accuracy                           0.97       150

6.7  Other Classification Methods

This section will look at other popular classification methods such as Bayes 
classification, Bayesian belief network, rule-based classification, K nearest neigh-
bors (KNN), backpropagation, and genetic algorithms.

Naive Bayes Classification

Bayesian classifiers are comparable in performance with decision trees and rule-
based classification. There are many classifiers modeled based on the Bayes theo-
rem. These classifiers predict class membership probabilities. Given training data 
X, the posterior probability of a hypothesis H, P(H|X), follows the Bayes’ theorem 
(Han et al. 2014)

where
P(H) is Prior probability, the probability before getting the evidence,

P(H|E) is Posterior probability, the probability after getting evidence.

Bayesian classifiers assume that the effect of a feature on classification is inde-
pendent of the other features, which helps to simplify the computations. This 
assumption is called class conditional independence, leading to the ‘Naïve’ Bayes 
classification method.

Bayesian Belief Network

As we mentioned, Bayesian classifiers assume independence of the features. 
Multi-collinearity of features is a major challenge in multivariate analysis. 
Bayesian belief networks do not assume class conditional independence. Bayesian 
belief networks are probabilistic graphical models that represent dependen-
cies among subsets of features and are modeled on joint conditional probability 
distributions.

P(H|E) = P(E|H)P(H)/P(E)



203

Fig. 6.7  A Bayesian Belief 
Network for CRM

A belief network has two components—a directed acyclic graph (see Fig. 6.7) 
and a set of conditional probability tables. Each node represents a feature (a ran-
dom variable)—discrete or continuous valued. The edges build relationships 
among the features.

Rule-Based Classification

If the conditions in the intermediate nodes of a decision tree are written as {if … 
then … else} rules, it is called rule-based classification. One rule is created for 
each path from the root to a leaf. Rules must be mutually exclusive and collec-
tively exhaustive. Figure 6.5b gives an example for the rule-based classification of 
iris flowers. A simple way to rank the rules is to order them based on the decreas-
ing order of misclassification. A leaf node holds the predicted data (ideally belong-
ing to one class). A rule is assessed based on coverage and accuracy:

• Coverage: the number of tuples covered by the rule/sample size.
• Accuracy: the number of tuples correctly classified by rule/coverage.

KNN (K Nearest Neighbors)

KNN maintains a set of training data objects described by n features or dimen-
sions. Given an unknown object, the classifier searches for the K nearest objects 
in the training dataset. Nearness may be measured using a distance metric, such 
as Euclidean distance. After examining the class labels of the nearest neighbors, 
the label with the highest frequency will be assigned to the new object. Initially, a 
small set of data objects is selected; all other data objects are classified based on 
the procedure mentioned above. The feature variables may be scaled to speed up 
the process.

During the training time, KNN stores the complete dataset. Computations (for 
classifying a test object) are deferred to testing time. Therefore, KNN is called a 
lazy learner.

6.7 Other Classification Methods



204 6 Classification

The KNN algorithm can also make use of the regression method. In this 
method, KNN identifies the K nearest neighbors and predicts a numerical value 
(class label) for the new data point based on the average (or weighted average) of 
the target values of those neighbors.

Backpropagation (Neural Networks)

A neural network consists of multiple layers composed of neurons. Neurons take 
multiple inputs and generate one output using an activation function. A connection 
between two neurons has a weight associated with it. A neural network learns by 
adjusting the weights to optimize its ability to predict the class labels correctly. 
Backpropagation is the most popular neural network learning algorithm. See 
Chap. 12, ‘Artificial Intelligence’, for a detailed description.

Genetic Algorithms

Genetic algorithms, inspired by the principles of natural evolution, offer a power-
ful approach to problem-solving and optimization. In genetic learning, the process 
initiates with the creation of an initial population. This population comprises ran-
domly generated rules, represented as bit patterns ranging from {0000 to 1111}. 
This binary coding extends to features and classes, creating a framework for sys-
tematically representing various elements.

The essence of genetic algorithms lies in their ability to create offspring by 
applying genetic operators, specifically crossover and mutation. In the crossover 
process, substrings from pairs of rules are exchanged, forming new pairs of rules. 
This mimics the idea of genetic recombination seen in natural evolution. On the 
other hand, the mutation operation involves randomly selecting bits in a rule's 
string and inverting them. This introduces variability and randomness into the pop-
ulation, simulating the mutation process observed in biological organisms.

The iterative nature of genetic algorithms involves generating a new popula-
tion based on the existing rules. This process continues until a population, denoted 
as P, evolves, where each rule within P meets a predetermined fitness threshold. 
The fitness threshold represents the specific criteria or performance level that rules 
must achieve to be considered suitable for the given problem or task.

One notable advantage of genetic algorithms is their inherent parallelizability. 
This means the algorithm can efficiently leverage parallel processing capabili-
ties, enhancing its computational efficiency and speed. Genetic algorithms find 
diverse applications, including classification problems and general optimization 
tasks. In data mining, these algorithms are not only employed for problem-solving. 
However, they can also serve as evaluative tools for assessing the fitness and per-
formance of other algorithms, contributing to the broader landscape of algorithmic 
exploration and refinement.

http://dx.doi.org/10.1007/978-981-99-0353-5_12


205

peripheral sensory 
neuropathy

blood sugar

height age

alcohol

Fig. 6.8  Factors affecting peripheral sensory neuropathy

Data Analytics in Action 

Risk factors for diabetic peripheral sensory neuropathy (Adler et al. 1997).
 Peripheral neuropathy is a case of numbness and pain, usually in the hands 
and feet, resulting from damage to the nerves outside the brain and spinal 
cord (peripheral nerves). In peripheral motor neuropathy, damage happens 
to the nerves that control movement. In peripheral sensory neuropathy, dam-
age happens to the sensory nerves, the nerves that carry touch, temperature, 
pain, and other sensations to the brain. See Fig. 6.8.

A study on risk factors affecting diabetic peripheral sensory neuropathy is 
presented here. A cohort of 288 diabetic veterans who did not have neurop-
athy was selected for the study. Over several years, 20% developed insensi-
tivity to the foot resulting from diabetic peripheral sensory neuropathy. The 
feature variables in the study included (a) factors such as gender and eth-
nicity, age, height, duration of diabetes, glycohemoglobin (glucose-bound 
hemoglobin) level, history of lower extremity ulceration, callus, edema, 
alcohol score, smoking, and albumin level.
Multivariate logistic regression analysis was conducted, controlling for gen-
der and ethnicity. The result showed independent and significant associa-
tions with age, height, duration of diabetes, glycohemoglobin level, history 
of lower extremity ulceration, callus, and edema. The conclusions of the 
study are listed below:

• Poor glycaemic control increases the risk of neuropathy.
• Height and age increase the risk of neuropathy.
• Neuropathy in diabetic veterans may be worsened by alcohol ingestion.
• Early identification of risk factors and risk-prone subjects can be done. 

This might provide a means for interventions or treatments.

6.7 Other Classification Methods



206 6 Classification

Summary

Classification is an extensively used statistical technique in data mining. It is 
used for the prediction of categorical class labels.

A regression model uses continuous-valued functions for numeric predic-
tion—e.g., sales. A classification model predicts categorical (discrete or unor-
dered) class labels—e.g., credit/loan approval, fraud detection, and medical 
diagnosis. The typical performance measures for a classifier include—precision, 
recall, and F1-score.

Binary logistic regression uses a set of numeric features for a two-way classifi-
cation. This can be extended for multi-class classification; if we have c classes, we 
need a maximum of c-1 classifiers.

Linear discriminant analysis is a technique for analyzing data when the target 
variable is categorical and the features are numeric. If there are c target classes, we 
need a maximum of c-1 discriminant functions using the feature variables, which 
will best discriminate between the target categories. In stepwise discriminant anal-
ysis, the features are entered (or removed) one after the other based on their ability 
to discriminate between the groups.

A decision tree is a collection of nodes arranged as a binary tree. The inte-
rior nodes evaluate a logical condition for classification. The leaf nodes carry the 
actual data. Exhaustive tree construction or tree access is computationally prohib-
itive for big datasets, leading to overfitting. This necessitates tree pruning during 
the process of tree construction or after that. In practice, we come across data with 
numerous feature variables, and there is a need to identify, rank, and select the 
vital ones. Information Gain and Gini index are popular measures for selecting 
the best features. A decision tree may grow into too many branches. This may be 
attributable to noise or outliers, among other reasons. Such overfitting causes poor 
accuracy for unseen samples. There are two approaches to avoid overfitting. In 
pre-pruning, we halt the branch construction early if the goodness of fit falls below 
a threshold. In post-pruning, we remove branches from a ‘fully grown’ tree.

Support vector machines utilize nonlinear mapping to elevate the original train-
ing data into a higher dimensional space. When appropriately mapped to a suf-
ficiently high dimension, it becomes possible to separate data from two classes 
using a hyperplane consistently. SVM accomplishes this by identifying the 
hyperplane through support vectors and margins. Support vectors, the data points 
touching the decision boundary, play a pivotal role in determining the optimal sep-
aration, and these support vectors define the margins. The functions responsible 
for transforming the data in SVM are called Kernel functions, encompassing var-
ious types such as polynomial, radial basis function (RBF), sigmoid, and more. 
Notably, the decision hyperplanes employed in nonlinear SVMs align with those 
used in popular neural network classifiers.

Bayesian classifiers predict class membership probabilities. Bayesian clas-
sifiers assume that the effect of a feature on classification is independent of the 
other features, which helps to simplify the computations. This assumption is 
called class conditional independence, leading to the ‘Naïve’ Bayes classification 
method. Multi-collinearity of features is a major challenge in multivariate analysis. 



207

Bayesian belief networks are probabilistic graphical models that represent depend-
encies among subsets of features and are modeled on joint conditional probabil-
ity distributions. If the conditions in the intermediate nodes of a decision tree are 
written as {if … then … else} rules, it is called rule-based classification. One rule 
is created for each path from the root to a leaf. Rules must be mutually exclusive 
and collectively exhaustive. The nearest neighbor maintains a set of training data 
points described by n features or dimensions. Given an unknown tuple, a K nearest 
neighbor classifier searches for K nearest training data points. Nearness is meas-
ured using a distance metric, such as Euclidean distance. A neural network learns 
by adjusting the weights to optimize its ability to predict the class labels correctly. 
Backpropagation is the most popular neural network algorithm. Genetic algorithms 
are easily parallelizable. They find applications in classification and diverse opti-
mization problems. They can be utilized to evaluate the fitness of other algorithms.

Questions

Comprehension

 1. Compare and contrast classification with regression.
 2. Mention some practical applications of classification.
 3. Mention some methods that are undertaken to improve prediction accuracy.
 4. State and explain the relationship between logit function and the sigmoid 

function.
 5. Write a brief note on the method to develop a multi-class classification tech-

nique using logistic regression.
 6. State and explain the linear discriminant analysis model.
 7. Write a brief note on feature selection in linear discriminant analysis.
 8. Define information Gain, entropy, and Gini index.
 9. Write a note on overfitting and tree pruning.
 10. Define support vector and Kernel.
 11. Write a short note on SVM.
12. Discuss various metrics for model performance.
13. State and explain binary logistic regression.
14. Write a brief note on the Decision Tree building procedure.
15. Explain how Decision Trees can be used for feature selection.

Analysis

 16. Explain the concept of precision in the context of classification performance 
measurement. How does it relate to false positives and true positives?

 17. In binary logistic regression, what is the role of the sigmoid function (inverse 
logit) in mapping the linear combination of features and coefficients to class 
probabilities? How does it impact the decision boundary?

 18. Compare and contrast linear discriminant analysis with linear regression.
 19. Explain the concept of discriminant functions in LDA. How are these func-

tions used to discriminate between different target categories?

6.7 Other Classification Methods



208 6 Classification

 20. Describe the basic structure of a decision tree. How are nodes, leaves, and 
interior nodes used in decision-making?

 21. What is overfitting in the context of decision trees, and why is it a concern? 
How can pre-pruning and post-pruning be used to avoid overfitting?

 22. The following topic is not covered in the book; however, we encourage you to 
explore it:  How does SVM use kernel functions to transform data into higher 
dimensions? Explain the role of support vectors and margins in finding the 
optimal hyperplane.

 23. Compare and contrast the Naive Bayes classification approach with decision 
trees and rule-based classification. What are the key assumptions of Naive 
Bayes?

 24. How does the concept of feature selection relate to classification accuracy? 
Explain Information Gain and the Gini index as methods for feature selection.

 25. Choose a classification problem where data separation is not linearly achieva-
ble. Describe how SVM, particularly with the RBF Kernel, can be applied to 
solve this problem.

Exercises

The questions in this section are based on the diamonds dataset accessible from 
the Seaborn Library. The diamonds dataset consists of features that determine 
the diamond price. We will categorize the price into three categories—0, 1, and 
2—low, medium, and high. Develop a classifier based on the numeric features to 
classify an object to one of the above price categories. Apply the various methods 
shown in the Tutorials. The data preprocessing step is shown below. The exercises 
are listed after that.

Diamonds Dataset preprocessing

import seaborn as sb
d  = sb.load_dataset(‘diamonds’)
d  = d.dropna()
d.info()

Creating a categorical variable pCat with values 0,1,2 based on price
import numpy as np
import pandas as pd
d[‘pCat’] = np.zeros(d.shape[0])
for i in d.index:
    if   d.loc[i, ‘price’] < 2000: d.loc[i, ‘pCat’] = 0
    elif d.loc[i, ‘price’] < 8000: d.loc[i, ‘pCat’] = 1
    else: d.loc[i, ‘pCat’] = 2



209

Fig. 6.9  Decision tree for two-way classification of Virginica and Versicolor flowers

Create DataFrame X that consists of predictor variables
X = d[[‘carat’, ‘depth’, ‘table’, ‘x’, ‘y’, ‘z’]]

Create DataFrame y for class labels (pCat =0,1,2)

y = d.pCat

Exercise 6.1: Classify Diamonds

Predict diamond price category based on the given features using various classifi-
cation methods such as

 (a) Binary Logistic Regression.
 (b) Multi-Class Logistic Regression.
 (c) Linear Discriminant Analysis.
 (d) Decision Tree.
 (e) Support Vector.

Exercise 6.2: Compare Model Performance

Compare the performance of the above models and interpret the results.

Exercise 6.3 Decision Tree Classification

Figure 6.9 represents the decision tree classification of iris flowers. Explain the 
feature selection based on gini index. Build a rule-based classification (if–then-
else rules). Discuss bias-variance tradeoff in the context of the diagram.

References



210 6 Classification

Exercise 6.4 Classification Model Performance

In the classification of 150 iris flowers, the following results were obtained. 
Explain the results and underlying computation.

a) Categories: setosa, versicolor, virginica

Confusion matrix

array([[50,  0,  0],
       [ 0, 45,  5],
       [ 0,  1, 49]])

b) Classification_Report

                 precision    recall      f1-score   support

      setosa       1.00      1.00      1.00        50
  versicolor       0.98      0.90      0.94        50
   virginica       0.91      0.98      0.94        50

    accuracy                           0.96       150
   macro avg       0.96      0.96      0.96       150
weighted avg       0.96      0.96      0.96       150

References

Adler AI, Boyko EJ, Ahroni JH, Stensel VX, Forsberg RC, Smith DG (1997) Risk factors for 
diabetic peripheral sensory neuropathy: results of the seattle prospective diabetic foot study. 
Diabet Care

Deisenroth MP, FAA, OCS (2020) Mathematics for machine learning. Cambridge University 
Press. https://mml-book.github.io

Géron A (2019) Hands-on machine learning with scikit-Learn, keras, and tensor flow (2019, 
O’reilly). In: Hands-on machine learning with R

Han J,  Kamber M,  Pei J (2014)  Data mining. Concepts and techniques, 3rd edn. (The Morgan 
Kaufmann series in data management systems). In: Proceedings 2013 international confer-
ence on machine intelligence research and advancement, ICMIRA 2013

Malhotra NK (2020) Marketing research an applied prientation, 7th edn. Pearson Education

https://mml-book.github.io


211

Learning Objectives

• Understand the basic principles of factor analysis.
• Examine the application of eigenvalue analysis for factor extraction.
• Explain principal component analysis.
• Discuss the common terms used in the factor analysis procedure.
• Discuss the critical aspects of measurements and data collection.
• Describe the basic data validation done in factor analysis.
• Describe the steps involved in the computational procedure for factor analysis.
• Determine the number of factors that emerge from factor analysis.
• Illustrate confirmatory factor analysis.
• Demonstrate factor analysis using Python.

Overview

In business and industrial practices, we may encounter numerous measured fea-
tures of a phenomenon or a problem. We may need to derive a smaller set of val-
uable factors that define the phenomena from this. Factor analysis is a broad term 
encompassing a set of techniques primarily employed for the purposes of data 
reduction and summarization.

The chapter explains the theoretical background of factor analysis and intro-
duces two methods—principal component analysis (PCA) and common factor 

Chapter 7
Factor Analysis

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques, 
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_7

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_7.

https://doi.org/10.1007/978-981-99-0353-5_7#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_7&domain=pdf


212

analysis (CFA). This is followed by a discussion of eigenvalue analysis and the 
extraction of principal components. General concepts associated with factor analy-
sis, such as instrument design, validity, and rotation, are introduced. After that, the 
computational procedure for factor analysis is described in detail. This includes 
the iterative procedure for removing trivial variables, the criteria for narrowing 
down on a desired number of factors, and naming/conceptualizing the factors. The 
section describes confirmatory factor analysis using structural equation modeling. 
This is followed by a detailed tutorial on factor analysis using Python based on a 
case study of IT project performance.

Definitions

Bartlett’s test of sphericity: Inspects whether sufficient correlations exist among 
variables for them to group into factors. Bartlett’s test statistic must be significant 
(p-value <= 0.05).
Communality: This is the amount of variance a variable shares with all the other 
variables.
Confirmatory Factor Analysis (CFA): CFA considers only common variance. This 
is usually done following principal component analysis, i.e., after we have gained 
some insight into the variables and their correlations.
Cronbach’s alpha: This statistic is a good measure of internal consistency reliabil-
ity. The value is expected to be above 0.6.
Eigenvalue: This represents the total variance explained by each factor. A value of 
1 indicates that the factor can explain the variance of 1 variable, and so on.
Factor Analysis: Factor analysis is a broad term encompassing a set of techniques 
primarily employed for the purposes of data reduction and summarization.
Factor loading matrix: This matrix contains the factor loadings of all the variables 
on all the factors extracted.
Factor loading: These are simple correlations between the variables and the 
factors.
Kaiser–Meyer–Olkin (KMO): A measure of sampling adequacy that indicates the 
proportion of variance in the variables that the underlying factors might cause.
Orthogonal rotation: Orthogonal rotation generates a set of uncorrelated factors 
from the factor loading matrix. This includes methods like Varimax, Equimax, or 
Quartimax.
Principal Component Analysis: Principal component analysis is a popular tech-
nique for data summarization and reduction. PCA is an exploratory data analysis 
method that considers total variance. PCA reduces a set of measured features to a 
few conceptual/latent factors.
Structural Equation Modelling (SEM): This multivariate statistical methodol-
ogy uses a confirmatory factor analysis approach to analyze a structural theory. 
SEM can accommodate multiple interrelated dependence relationships in a single 
model.
Variance: There are three types of variance considering a set of features. Specific 
variance is the variance associated with the specific variable. Common variance is 

7 Factor Analysis



213

the variance shared with all other variables. Error variance is the unexplained vari-
ance that results from some data-gathering error or random error.
Varimax rotation: This orthogonal rotation method usually results in factors with 
high factor loadings by fewer variables. At the same time, these variables are 
expected to have low factor loadings for the other variables. This enhances the 
interpretability of the factors.

7.1  Factor Analysis—Introduction and Overview

We frequently encounter situations where the feature dimensions are high. 
From this multitude of features, discerning the significant ones that genuinely 
impact the problem under investigation can be challenging. Furthermore, the pres-
ence of correlations among these features can lead to inflated estimations. As a 
result, it becomes vital to summarize and reduce the number of features to con-
struct a meaningful and computationally effective model.

7.1.1  Factor Analysis

Factor analysis is a broad term encompassing a set of techniques primarily 
employed for the purposes of data reduction and summarization. In this method, 
we examine a set of observed variables for interrelationship and attempt to explain 
their variance in terms of a few concepts called constructs or factors. Each factor 
encompasses a set of highly correlated variables, which are simultaneously antic-
ipated to exhibit minimal correlation with variables belonging to other factors. 
As these variables are mapped into a smaller set of factors, the data volume gets 
reduced.

Assume that there are ‘k’ variables {X1 … Xk} and they map to ‘n’ underlying 
factors {F1 … Fn} (where n < k). The following equation represents the relation-
ship of the variables to with the factors Fi:

where:

Fi    estimate of the ith factor.
Wij    loading of variable Xj on factor Fi.

The total variance of a variable can be expressed in terms of the following 
(Sundararajan et al. 2019):

(a) Specific variance—the variance associated with the specific variable.
(b) Common variance—the variance shared with all other variables.
(c) Error variance—the unexplained variance that results from some data-gather-

ing error or random error.

(7.1)Fi = Wi1X1 +Wi2X2 + ...+WikXk

7.1 Factor Analysis—Introduction and Overview



214 7 Factor Analysis

There are many methods for factor analysis, such as Principal Component 
Analysis (PCA) and Common Factor Analysis (CFA). PCA is an exploratory data 
analysis method that considers total variance. It is used where prior knowledge 
indicates that specific variance and error variance may represent a relatively small 
portion of the total variance, and the primary objective of the researcher is data 
reduction. PCA is the most popular technique used in Factor Analysis. CFA is a 
confirmatory factor analysis method that considers only common variance.

7.1.2  PCA—Theoretical Basis

Principal Component Analysis (PCA) is a dimensionality reduction tech-
nique commonly used in data analysis and machine learning. It is a mathematical 
method that aims to transform a dataset into a new coordinate system of fewer 
dimensions in such a way that it captures as much variance in the data as possi-
ble. In other words, PCA reduces the dimensionality of the dataset while retaining 
as much information as possible in the selected principal components. The main 
method used for PCA is Eigenvalue analysis. Let us look at the mathematical basis 
and the corresponding computer algorithm.

Mathematical Basis for PCA Using Eigen Value Analysis

Consider a matrix A of size n × n. Then there is a non-zero vector ‘v’, such that,

Consider an identity matrix I. The diagonals of an identity matrix are 1, and all 
other cells are zero. The above equation can be rewritten as,

The above equation can be solved using the following method (Strang 2022). 
Compute the determinant of (A − λI). The result will be a polynomial in λ, of 
degree n (as A is an n × n matrix). Set the determinant (det) to zero and find roots. 
The n roots are the ‘n’ eigenvalues of A.

For each eigenvalue λ, solve (A − λI)v = 0, to find the corresponding eigenvector v.
These eigenvectors represent the factor loadings, which convey the strength of 

the relation between each observed variable and the underlying factor. Factor load-
ings can be positive or negative, representing the direction of the relationship.

Av = �v, where � is an eigenvalue ofA

Av = �Iv

This implies that, Av− �Iv = 0

Or

(A− �I)v = 0

det (A− �I)v = 0



215

Algorithm for PCA Using Eigen Value Analysis

The steps involved in performing PCA using eigenvalues and eigenvectors are 
shown below:

1. Standardize the data: This step ensures that variables with different units and 
scales don’t disproportionately influence the results. Data standardization is 
discussed in Sect. 2.8.2. For example, consider z-score standardization. An 
observation xi can be transformed into z-score as follows:

2. Compute the covariance matrix: The covariance matrix summarizes the rela-
tionships between variables in the dataset. It is a square matrix where the 
diagonal elements represent the variances of individual variables, and the 
off-diagonal elements represent the covariances between pairs of variables.

3. Calculate the eigenvalues and eigenvectors: Here we transform the data into a 
different coordinate system. The eigenvalues represent the variances explained 
by each principal component axis, while the eigenvectors are the directions of 
this component axis.

4. Sort the eigenvalues: Arrange the eigenvalues in descending order. We aim to 
retain the principal components with the highest eigenvalues. (The correspond-
ing principal components capture most of the variance in the data.)

5. Select the principal components: Decide how many principal components we 
need for dimensionality reduction. Typically, this is based on the explained var-
iance (discussed later).

6. Create the projection matrix: Form a matrix of the selected eigenvectors (corre-
sponding to the chosen principal components).

7. Project the data: Multiply the standardized data by the projection matrix to 
obtain the transformed data in the reduced-dimensional space.

7.1.3  A Case Study

Let us consider the case study discussed in Sect. 5.4. Example. A study was 
conducted to explore the variables that influence the performance of a software 
project (Sundararajan 2021). In this exercise, we consider 11 variables measured 
on a scale of 1–7 and an additional variable, ‘project_type’, with values {0,1,2}. 
Note that ‘case number’ is not considered in the analysis. The outcome variable, 
project performance (project_perf), was measured in terms of deviation from the 
estimated effort. Data were collected from 100 software projects. The frequency 
distributions of 11 variables are shown in Fig. 5.3.

zi = (xi−xmean)/sd, where sd is the standard deviation of the sample

7.1 Factor Analysis—Introduction and Overview

http://dx.doi.org/10.1007/978-981-99-0353-5_2
http://dx.doi.org/10.1007/978-981-99-0353-5_5
http://dx.doi.org/10.1007/978-981-99-0353-5_5


216 7 Factor Analysis

Tutorial 7.1    Factor Analysis Case Study - Basics

The code in this tutorial strictly follows six steps in the Algorithm for PCA 
using Eigen Value Analysis. The training data having 12 feature variables is 
reduced to 2 factors!

Refer: Section 1.3 for dataset or {(Sundararajan, 2023)}

import pandas as pd
import seaborn as sb
import numpy as np
import matplotlib.pyplot as plt

d=pd.read_csv('itprojects.csv')

d.columns
# 'project_perf' is the outcome; drop it. also drop 'Case_No'

X=d[['change_mgmt', 'project_plan', 'tech_mentoring', 'pm_tools',
 'dev_process', 'system_arch', 'design_think', 'team_skills',
 'core_team', 'prior_exp', 'rewards_recog', 'project_type']]

Plot the frequency distributions of the variables
plt.title("Features affecting software project performance")
sb.kdeplot(data=X)

See Figure 7.1: Variable Reduction Using Factor Analysis

training_data = X.copy()
training_data.columns
['change_mgmt', 'project_plan', 'tech_mentoring', 'pm_tools',
 'dev_process', 'system_arch', 'design_think', 'team_skills',
 'core_team', 'prior_exp', 'rewards_recog', 'project_type']

1. The data is already standardised. All the features are on 1-7 scale.

2. Compute the covariance matrix: 12 features: 12x12 matrix
covariance_matrix = np.cov(training_data, rowvar=False)
print("Covariance Matrix:", np.round(covariance_matrix,1))
Covariance Matrix: 
[[ 0.9  0.5 -0.1 -0.1  0.1  0.1  0.2  0.2  0.1  0.1  0.1  0.2]
 [ 0.5  0.9 -0.2 -0.1  0.1  0.1  0.1  0.2 -0.   0.1  0.2  0.2]
 [-0.1 -0.2  0.7  0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.2 -0.3  0.2]
 [-0.1 -0.1  0.2  0.5 -0.1 -0.2 -0.1 -0.1 -0.1 -0.2 -0.2  0.2]
 [ 0.1  0.1 -0.2 -0.1  0.5  0.3  0.3  0.1  0.1  0.2  0.2 -0.2]
 [ 0.1  0.1 -0.2 -0.2  0.3  0.5  0.3  0.2  0.2  0.1  0.3 -0.2]
 [ 0.2  0.1 -0.2 -0.1  0.3  0.3  0.5  0.1  0.2  0.2  0.2 -0.2]
 [ 0.2  0.2 -0.2 -0.1  0.1  0.2  0.1  0.6  0.2  0.2  0.3 -0.1]
 [ 0.1 -0.  -0.1 -0.1  0.1  0.2  0.2  0.2  0.5  0.2  0.3 -0.2]
 [ 0.1  0.1 -0.2 -0.2  0.2  0.1  0.2  0.2  0.2  0.4  0.2 -0.2]
 [ 0.1  0.2 -0.3 -0.2  0.2  0.3  0.2  0.3  0.3  0.2  0.9 -0.3]
 [ 0.2  0.2  0.2  0.2 -0.2 -0.2 -0.2 -0.1 -0.2 -0.2 -0.3  0.5]]



217

3. Calculate the eigenvalues and eigenvectors

eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
print("Eigen Values:", np.round(eigenvalues,2))
Eigen Values: 
[2.47 1.36 0.66 0.11 0.16 0.19 0.23 0.28 0.51 0.38 0.42 0.47]    

4. Sort the eigenvalues: the values are in sorted order

5. Select the principal components: 

If eigen value = n, the respective principal component can represent the 
variation due to n variables. Select the components with eigen values > 1

selected_eigenvalues = eigenvalues[:2]
print("Eigen Values of Selected Principal Components:", 
np.round(selected_eigenvalues,2))

Eigen Values of Selected Principal Components: [2.47 1.36]

Show the eigen vectors corresponding to selected principal components
selected_eigenvectors = eigenvectors[:2, :]
print("Eigen Vectors of Selected Principal Components:", 
np.round(selected_eigenvectors,2))
[-0.26 -0.62 -0.23 -0.1  -0.23  0.13  0.15 -0.12 -0.38 -0.45 -0.2   0.02]
[-0.25 -0.59  0.22  0.12 -0.16  0.16 -0.18  0.13  0.36  0.42  0.26 -0.23]]

Take a look at the original data
print("Original Data in 12 Dimensions:", training_data)

6. Create the projection matrix

Project the data to the selected principal component axes

projected_data = np.dot(training_data, selected_eigenvectors.T)
print("Data Projected to 2 Principal Components:", np.round(projected_
data,2))
Data Projected to 2 Principal Components: 
[[ 1.68    1.39]
 [-11.12   0.09]
 [-10.72   1.43]
 [-10.19   0.98]
 [ -9.67   2.18]
     ...    ...
 [-10.42   1.2 ]
 [-10.41   1.43]
 [ -9.5    1.41]
 [-11.96   0.96]
 [-10.81   1.54]]

Table 7.1 shows data dimension reduction from 12 features to 2 factors

7.1 Factor Analysis—Introduction and Overview



218 7 Factor Analysis

Table 7.1  Factors/eigen values that emerged from the factor analysis

Training Data Projected Data
5 5 2 1 5 5 5 5 5 5 5 1 1.68 1.39
6 6 1 2 6 6 6 6 5 5 5 1 - 11.12 0.09
5 5 2 2 5 5 5 6 6 5 4 1 - 10.72 1.43
5 5 1 2 5 5 5 5 5 5 5 1 - 10.19 0.98
2 5 2 2 5 5 5 5 5 5 5 0 - 9.67 2.18
… … … … … … … … … … … … … …
5 5 2 2 5 5 5 5 5 5 5 1 - 10.42 1.2
5 5 2 3 4 5 4 5 5 5 5 2 - 10.41 1.43
5 4 3 2 4 4 4 4 5 4 5 2 - 9.5 1.41
6 6 2 2 5 5 6 5 6 6 5 1 - 11.96 0.96
5 5 1 3 6 6 6 5 6 5 6 1 - 10.81 1.54

7.2  Important Concepts Associated with Factor Analysis

Here, we are going to discuss important concepts associated with factor 
analysis.

7.2.1  The Measurement Instrument

Due diligence is needed in the instrument design (the variables and their meas-
urement) for a successful factor analysis technique (Malhotra 2020). The instru-
ment must be well designed to ensure clarity and comprehensiveness of the 
measured phenomena. A checklist is provided below.

1. Identify the objectives of factor analysis.
2. Decide the variables to be measured. This should be based on past research, 

theory, and the researcher’s judgment. Include only the variables relevant to the 
concept being explored.

3. Measure the variables using an appropriate scale—e.g., interval or ratio scale.
4. Select the appropriate sample size to reflect the population. As a rough guide-

line, there should be at least five times as many observations as variables.
5. Exclude instances of variables with missing values. Otherwise, attempt to 

impute missing values if the researcher is certain that the data imputations pre-
serve the properties of the variables under consideration to an acceptable level.



219

7.2.2  Data Validation

In statistical data analysis, validity and reliability must be inspected as the first 
step in the analysis of results. The data collected must be representative and of 
adequate quality. The following criteria apply to factor analysis (Malhotra 2020).

• Bartlett’s test of sphericity: Sufficient correlations exist among variables 
for them to group into factors. Bartlett’s test statistic must be significant 
(p-value <= 0.05). (Note: The null hypothesis in this test is that significant cor-
relations do not exist among the variables. This is rejected when p <= the sig-
nificance level assumed, e.g., 0.05.)

• Kaiser–Meyer–Olkin’s (KMO) measure of sampling adequacy indicates the 
proportion of variance in the variables that the underlying factors might cause. 
High values (0.6–0.9) generally indicate that factor analysis may be helpful 
with the data.

• Cronbach’s alpha (α) statistic is a good measure of internal consistency reliabil-
ity—its value needs to be above 0.6. Check Cronbach’s alpha over all the varia-
bles taken together and then for each factor separately.

7.2.3  Common Terms Associated with Factor Analysis

Factor loadings represent straightforward correlations between variables and 
factors (principal components). Within the factor matrix, you find the factor load-
ings for all variables across all extracted factors. Communality indicates the extent 
of variance a variable shares with other variables, as indicated by the derived fac-
tors. Eigenvalues, on the other hand, signify the overall variance explained by each 
factor. The values are expected to be 1 or more. A value of 1 indicates that the fac-
tor can explain the variance of 1 variable.

7.2.4  Rotation

Several procedures have been suggested for factor extraction and determining 
the number of factors in Principal Component Analysis (Hair et al. 2010). The fac-
tor loading matrix (see Table 7.4) represents the correlation between factors and 
variables. A large value indicates a closer relationship between the variable with 
the factor. Ideally, each variable should exhibit a maximum correlation (1.0) with 
a single factor and a minimum correlation (0.0) with all other factors. However, 
practical scenarios seldom conform to this ideal, leading to challenges in interpre-
tation. To address this, the factor matrix is rotated—a process designed to simplify 
the structure and improve interpretability. It’s important to note that this rotation 
doesn’t improve the overall variance explained by the principal components; 

7.2 Important Concepts Associated with Factor Analysis



220 7 Factor Analysis

Fig. 7.1  Variable reduction 
using factor analysis

rather, its objective is to present a more comprehensible and meaningful depiction 
of the relationships among variables.

If our objective is to generate uncorrelated factors, we use orthogonal rotation. 
The rotation is called orthogonal if the axes are maintained at right angles. This 
includes methods like Varimax, Equimax, or Quartimax.

The commonly used method for orthogonal rotation is the varimax procedure. 
This method usually results in factors with high factor loadings by fewer varia-
bles. At the same time, these variables are expected to have low factor loadings 
for the other variables. This enhances the interpretability of the factors. The first 
factor provides the best summary of linear relationships in the data. The second 
factor, orthogonal to the first, is derived from the variance remaining after the one 
explained by the first factor. This process is repeated to extract an optimal number 
of factors.

There are many other ways of rotation. The rotation is called oblique rotation 
when the axes are not maintained at right angles, and the factors are correlated. 
Sometimes, allowing for correlations among factors may simplify the factor pat-
tern matrix. Oblique rotation should be used when factors in the population are 
likely to be strongly correlated.

To understand orthogonal rotation for variable reduction, see Fig. 7.2, which 
shows data distribution in two dimensions (X-Axis and Y-Axis). If we need to 
characterize the data variance using one dimension only, which one will we 
choose? X-axis? Y-axis? From Fig. 7.2, it is intuitive to note that the diagonal 
‘orange’ axis represents the data variations more than the X-axis or Y-axis, taken 
individually. This is an example of the application of axis rotation. Assuming we 
have several dimensions (hyperspace), we will choose the principal component of 
the new coordinate system that explains the maximum data variation. Then, we 
will look for a second dimension (second principal component) for further charac-
terization of the variance in data. Having chosen the ‘orange’ diagonal as the first 
principle component that represents most of the data variance, we would now cut 
an orthogonal line, as represented by the ‘blue’ diagonal, to supplement the char-
acterization. The blue line is the second principal component in orthogonal rota-
tion. The above process is repeated till we capture a reasonably good amount of 
data variance (using a relatively fewer number of factors.



221

Fig. 7.2  Scree plot showing 
two prominent factors

7.2.5  The Steps Involved in Factor Analysis

1. Perform factor analysis.
2. Check the factor analysis results and respecify the structure iteratively by 

removing the variables that load less or cross-load, one variable at a time.
3. The correlation of a variable with the factors is called factor loadings. The var-

iables that load less than |0.4| may be removed. A correlation of r = 0.4 implies 
an explained variance of r2 = 0.16 or 16%. Note that the researcher may choose 
to retain variables that load less than |0.4| if they deem to do so due to theoret-
ical considerations or prior history. Check the absolute value of the loading, 
discarding the sign.

4. If a variable loads multiple factors with high loadings, it is called cross-load-
ing. Remove the variable if the difference in cross-loadings is less than a 
threshold (e.g., 0.2).

5. Repeat steps 1–3 until the criteria for factor selection are met.
6. The factors that emerge from factor analysis can be interpreted and named in 

terms of the variables that load high on them. Look at the factor loading matrix 
and identify the variables that load a factor high.

7.2.6  How to Determine the Number of Factors

The number of factors that emerge from factor analysis is the same as the num-
ber of variables. The first factor explains the maximum variance in the data, fol-
lowed by the second, and so on. The idea of factor analysis is a reduction in the 
number of variables. Therefore, the researcher is left with the question of how 
many factors will be selected. The method for factor selection is discussed below.

7.2 Important Concepts Associated with Factor Analysis



222 7 Factor Analysis

Fig. 7.3  Reduction of 9 
variables to 3 factors

1. Select only factors with Eigenvalues greater than 1.0.
2. Scree Plot: A scree plot is a plot of the Eigenvalues against the number of fac-

tors in order of extraction. Experimental evidence indicates that the point at 
which the screen begins denotes the true number of factors. See Fig. 7.3.

3. Percentage of Variance: The number of factors extracted may be determined by 
the cumulative percentage of variance extracted by the factors. Check whether 
it is satisfactory (e.g., 60% or more).

4. A predetermined number of factors are based on the researcher’s intent.
5. A combination of the above methods.

7.3  The Project Performance Case Study

This section is a continuation of the case study described in Sect. 7.2.2. A set of 
tutorials is given at the end of this section to demonstrate the detailed steps asso-
ciated with principal component analysis for variable reduction. An abstract of the 
detailed analysis is provided here.

7.3.1  Factor Analysis Procedure

Instead of 12 variables in Tutorial 7.1, here we started with 11 variables (we 
dropped project_type). We used a package for factor analysis. It has several mod-
ules that help us in detailed factor analysis. After preliminary data analysis, nine 
variables were selected for factor analysis—team_skills, core_team, prior_exp, 
rewards_recog, dev_process, system_arch, design_think, change_mgmt, and pro-
ject_plan. Three factors (principal components) with eigenvalue >= 1 emerged 
during the principal component analysis. (See Tutorials 7.3.3–7.3.5) (Table 7.2).



223

Table 7.2  Factors/eigen values that emerged from the factor analysis

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 Factor9

3.52 1.39 1.18 0.70 0.64 0.53 0.41 0.37 0.25

Table 7.3  Factor loading matrix for 3-factor solution

Variable (Xi) F1 F2 F3 Factor (principal component)

team_skills 0.57 0.16 0.25 F1 (team)

core_team 0.69 0.2 −0.04

prior_exp 0.76 0.23 0.09

rewards_recog 0.5 0.24 0.14

dev_process 0.24 0.64 0.07 F2 (development process)

system_arch 0.26 0.77 0.12

design_think 0.22 0.77 0.11

change_mgmt 0.11 0.15 0.54 F3 (management process)

project_plan 0.08 0.02 0.92

The eigenvectors represent the factor loadings, which convey the strength of the 
relation between each observed variable and the underlying factor. Factor loadings 
can be positive or negative, representing the direction of the relationship. As we 
discussed earlier, Factors are linear sums of variables that can expressed as

The factors may be named based on the variables that load a factor high. Table 
7.3 shows that the variables prior_exp, core_team, team_skills, and rewards_recog 
constitute factor F1, which may be named the ‘team’ factor. The variables system_
arch and dev_process constitute factor F2, which may be named the ‘development 
process’ factor. The variables project_plan and change_mgmt constitute factor F3, 
which may be named the ‘management process’ factor.

7.3.2  Data Transformation

As discussed in the algorithm given in Sect. 7.2.1, the last two steps are—(a) 
create the projection matrix of the selected eigenvectors (corresponding to the cho-
sen principal components) and (b) multiply the input data by the projection matrix 
to obtain the transformed data in the reduced-dimensional space. This transfor-
mation can be achieved by the dot product of the input data with the projection 
matrix, as demonstrated at the end of Tutorial 7.1. Another method is shown under 
Tutorial 7.3.7. Each of the 100 observations will be transformed from 9 variables 
to 3 factors: -

Fi = Wi1X1 +Wi2X2 + ...+WikXk (See Eq. 7.1)

7.3 The Project Performance Case Study



224 7 Factor Analysis

• change_mgmt
• project_plan
• tech_mentoring
• pm_tools
• dev_process
• system_arch
• design_think
• team_skills
• core_team
• prior_exp
• rewards_recog

Input 
Variables

• team_skills
• core_team
• prior_exp
• rewards  and 
recog
• dev_process
• system_arch
• design_think
• change_mgmt
• project_plan

A�er In�al 
Valida�on

•Team
•Development 
Process
•Management 
Process

A�er 
Factor 

Analysis

Fig. 7.4  Variable reduction using factor analysis

Factor 1 (Team) = 
0.57 × team_skills + 0.69 × core_team + 0.76 × prior_exp + 
0.5 × rewards_recog + 0.24 × dev_process + 0.26 × system_arch + 
0.22 × design_think + 0.11 × change_mgmt + 0.08 × project_plan

Factor 2 (Development) = 
0.16 × team_skills + 0.20 × core_team + 0.23 × prior_exp + 
0.24 × rewards_recog + 0.64 × dev_process + 0.77 × system_arch + 
0.77 × design_think + 0.15 × change_mgmt + 0.02 × project_plan

Factor 3 (Management) = 
0.25 × team_skills - 0.04 × core_team + 0.09 × prior_exp + 
0.14 × rewards_recog + 0.07 × dev_process + 0.12 × system_arch + 
0.11 × design_think + 0.54 × change_mgmt + 0.92 × project_plan
Figure 7.4 depicts the 3-factor solution pictorially.

7.3.3  Case Study—Conclusion

The summary of the factor analysis case study is shown in Fig. 7.5. Note that 
there were initially 11 variables, but we discarded two after initial data validation. 
From the factor analysis of 9 variables a three-factor solution has emerged. The 
total variance explained by the model is 54%. This is not a good model, as the 
explanatory power is just above 50%.



225

Table 7.4  A data snap shot after factor analysis

Original Data (2 Rows x 9 Columns) 3 more 
variables

Row CM PP DP SA DT TS CT PE RR -

1 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 -

2 6.00 6.00 6.00 6.00 6.00 6.00 5.00 5.00 5.00 -

Reduced Data a�er Variable to Factor Transforma�on (2 Rows x 3 Columns)

Row Factor 2 
(Management)

Factor 1 
(Development) Factor 3 (Team) -

1 0.26 -0.05 0.09 -

2 1.40 1.35 0.05 -

Let us look at the data before and after variables to factors transformation. Let’s 
use abbreviations for variable names due to space considerations—team_skills 
(ts), core_team (ct), prior_exp (pe), rewards_recog (rr), dev_process (dp), system_
arch (sa), design_think (dt), change_mgmt (cm), and project_plan (pp). Table 7.4 
shows the transformation of the first two observations from nine variables to three 
factors.

Tutorial 7.3    Factor Analysis Case Study - Detailed

This is a continuation of Tutorial 7.1. Instead of 12 variables in that 
tutorial, here we consider 11 variables. We are using a package for factor 
analysis. It has several modules that help us in detailed factor analysis.

Tutorial 7.3.1 Environment Setup

import pandas as pd
import seaborn as sb
import numpy as np
import matplotlib.pyplot as plt

For data description, refer to Tutorial 7.1 or {(Sundararajan, 2023)}
Note:- if the data has missing values, they must be removed/imputed

d=pd.read_csv('itprojects.csv')
d.columns

Discard 'Case_No','project_type', 'project_perf'. Select all the other 11 
features

X = d[['change_mgmt', 'project_plan', 'tech_mentoring', 
       'pm_tools', 'dev_process', 'system_arch', 'design_think',
       'team_skills', 'core_team', 'prior_exp', 'rewards_recog']]

The frequency distribution of 12 variables is shown in Figure 5-3. Note that 
the distribution of the variables - tech_mentoring and pm_tools differ from 
the other variables. These variables get dropped during the factor analysis 
procedure.

7.3 The Project Performance Case Study



226 7 Factor Analysis

Fig. 7.5  Structural equation model representing software project characteristics



227

Tutorial 7.3.2 Data Validation

You may refer to: https://factor-analyzer.readthedocs.io/en/latest/
!pip install scipy==1.10.1 
# quick fix; install old scipy library, as the factor-analyzer module is 
deprecated
!pip install factor-analyzer

Import factor analysis main library
from factor_analyzer import FactorAnalyzer

Import routines for data validation
from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
from factor_analyzer.factor_analyzer import calculate_kmo

Bartlett’s test of sphericity: for the existence of correlations
chi_square_value,p_value=calculate_bartlett_sphericity(X)
round(p_value,3) # 0.000

p-value of BTS is < 0.05. Therefore, it is inferred that significant correla-
tions exist for factor formation
 
Kaiser-Meyer-Olkin (KMO) measure

kmo_item,kmo_model=calculate_kmo(X)
round(kmo_model,2)    # 0.77
np.round(kmo_item,2)

(0.6 , 0.59, 0.87, 0.86, 0.8 , 0.75, 0.79, 0.86, 0.74, 0.74, 0.87)
Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy statistic indicates the 
proportion of variance in the variables that the underlying factors might 
cause. A value> 0.6 is generally acceptable. Here, KMO is 0.66. Therefore, 
the sample is good for factor analysis

Tutorial 7.3.3 Factor analysis: Iteration - 1

Perform factor analysis iteratively, removing low-loading or high cross-
loading variables one at a time

fa = FactorAnalyzer(rotation='varimax')
fa.fit(X)

Check the Eigenvalues
ev, v = fa.get_eigenvalues()
np.round(ev,2)
[3.52, 1.39, 1.18, 0.7 , 0.64, 0.53, 0.41, 0.37, 0.25]

The eigenvalues of the first three factors are above 1. other factors must be 
discarded, as their eigenvalues are < 1.

7.3 The Project Performance Case Study



228 7 Factor Analysis

Scree plot to select the number of factors
x_axis = range(1,12,1)  # to accommodate 11 variables
plt.plot(x_axis,ev)
plt.title  ('Scree Plot')
plt.xlabel ('Factors')
plt.ylabel ('Eigenvalue')
plt.xlim(0,5)
plt.grid()
plt.show()

See Figure 7-2: Scree plot showing Two prominent factors. The scree plot 
bends sharply at 2, suggesting a two-factor solution. However, all the first 
3 factors have an eigenvalue of more than 1. Therefore, we will consider a 
3-factor solution. Note that 11 variables are reduced to 3 factors: 11 di-
mensions to 3.

Explore factor loading - rotated component matrix; See Table 7-4
fa.loadings_.shape  # (9,3)
nFactorsSelected = fa.loadings_.shape[1]

fa.loadings_round = np.round(fa.loadings_,2)
fa.loadings_round 

flmatrix  = pd.DataFrame()
flmatrix['var'] = list(X.columns)
for i in range(nFactorsSelected):
    flmatrix[('Factor'+str(i+1))]  = fa.loadings_round[:,i]
flmatrix
Factor Loading Matrix 
0      change_mgmt        0.11    0.15     0.54
1      project_plan       0.1     0.03     0.89
2      tech_mentoring    -0.4    -0.3     -0.23
3      pm_tools          -0.32   -0.29        -0.18
4      dev_process        0.25       0.64         0.07
5      system_arch        0.26       0.78         0.11
6      design_think       0.22       0.74         0.1
7      team_skills        0.59       0.15      0.24
8      core_team          0.66       0.2      -0.06
9      prior_exp          0.75       0.23      0.07
10     rewards_recog      0.53       0.24          0.14

Discard variables that cross load / load low. In the factor loading matrix, 
pm_tools loads less than 0.4. and it also cross loads f1(0.32), f2(0.29), 
with a difference of < 0.2. So remove pm_tools and re-run factor analysis

Tutorial 7.3.4 Factor analysis: Iteration - 2

X = d[['change_mgmt', 'project_plan', 'tech_mentoring', 
       'dev_process', 'system_arch', 'design_think',
       'team_skills', 'core_team', 'prior_exp', 'rewards_recog']]
X.columns



229

fa = FactorAnalyzer(rotation='varimax')
fa.fit(X)

fa.loadings_.shape  # (9,3)
nFactorsSelected = fa.loadings_.shape[1]

fa.loadings_round = np.round(fa.loadings_,2)
fa.loadings_round

flmatrix  = pd.DataFrame()
flmatrix['var'] = list(X.columns)
for i in range(nFactorsSelected):
    flmatrix[('Factor'+str(i+1))]  = fa.loadings_round[:,0]
flmatrix

In the new factor loading matrix, tech_mentoring loads less than 0.4  and it 
also cross loads f1(0.39), f2(0.29), with a difference of < 0.2. So, remove 
tech_mentoring and re-run factor analysis

Tutorial 7.3.5 Factor analysis: Iteration - 3

X = d[['change_mgmt', 'project_plan',  
       'dev_process', 'system_arch', 'design_think',
       'team_skills', 'core_team', 'prior_exp', 'rewards_recog']]

fa = FactorAnalyzer(rotation='varimax')
fa.fit(X)
ev, v = fa.get_eigenvalues();np.round(ev,2)
(0  3.52  1.39  1.18  0.70  0.64  0.53  0.41  0.37  0.25)

fa.loadings_.shape  # (9,3)
nFactorsSelected = fa.loadings_.shape[1]

fa.loadings_round = np.round(fa.loadings_,2)
fa.loadings_round

flmatrix  = pd.DataFrame()
flmatrix['var'] = list(X.columns)
for i in range(nFactorsSelected):
    flmatrix[('Factor'+str(i+1))]  = fa.loadings_round[:,0]
flmatrix

In the new factor loading matrix, variables load more than 0.4. There are no 
'big' cross-loadings. So, the factor analysis procedure is complete.

Tutorial 7.3.6 Final Check

The following were tested.
a) Bartlett’s test of sphericity for the existence of correlations; p-value 
of BTS must be < 0.05.
b) Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy; value > 0.6 is 
generally acceptable. 
c) Checked the scree plot around the knee; the 3-factor solution is fine 

7.3 The Project Performance Case Study



230 7 Factor Analysis

d) factor loading matrix shows that every factor has eigenvalues > 1. So, 
each factor is capable of explaining at least one variable

fa.get_factor_variance()

The sum of Squares Loadings      [1.81161258, 1.78944568, 1.25508526]
Proportion of Variance           [0.20129029, 0.1988273 , 0.13945392]
Cumulative Variance Explained    [0.20129029, 0.40011758, 0.5395715 ]
Total Variance Explained is   54%

Tutorial 7.3.7 Compute the Factor Scores 

F = fa.fit_transform(X) 
F[0:2,]
array([[ 0.08786772, -0.05484817,  0.26012858],
       [ 0.04872067,  1.35416323,  1.3952079 ]])

Add the factor score columns to the data frame d
d['team'] = F[:,0]
d['build'] = F[:,1]
d['management'] = F[:,2]

Write dataframe d with factor scores to a CSV data file, without index
d.to_csv('itprojectsWithfactors.csv',index = False)

Tutorial 7.3.8    Using Factor Scores for Regression

Consider Tutorial 7.1, where we conducted a Principal Component Analysis to 
reduce the 11 variables to a more manageable number of factors. In this tu-
torial, we use the factors that emerged from the factor analysis to build a 
regression model to predict project_perf. The regression model using all the 
variables gives a better accuracy than the regression model with the factors. 
However, variable reduction is helpful when the number of variables is too 
high and their interactions (multi-collinearity) are high.

import pandas as pd
import matplotlib.pyplot as plt

dt=pd.read_csv('itprojectsWithfactors.csv') # saved in earlier tutorial
dt.columns
'Case_No', 
'change_mgmt', 'project_plan',
'tech_mentoring', 'pm_tools', 'dev_process', 'system_arch',
'design_think', 'team_skills', 'core_team', 'prior_exp',
'rewards_recog', 
'project_type', 'project_perf'
'team', 'build', 'management'

import statsmodels.api as sm  # for regression
y = dt.project_perf
X = dt[['team', 'build', 'management']]
X['intercept'] = 1
model = sm.OLS(y,X,missing='drop').fit()         # build regression model



231

print(model.summary())
prob(F-statistic)   <= 0.05 significant
team                0.002   significant
build               0.545 > 0.05 / not significant
management          0.000   significant 
drop the factor build, as it is not significant

Drop the factor 'build' as it is not significant (p > 0.05)
X.drop('build',inplace=True,axis=1) 
model = sm.OLS(y,X,missing='drop').fit()         # build regression model
print(model.summary())

prob(F-statistic) <= 0.05 overall model     is significant
team           0.002   sig. factor team     is significant
management     0.000   sig. factor management is significant

Validations: -
Durbin-Watson: 1.854 (~2 observations do not have autocorrelation)
Prob(Omnibus) / Prob(JB) < 0.05 (the outcome variable is normal)
percentage of variance explained: -
Adj. R-squared:        0.505 
Intercept     -0.0000 ~ round(float(-5.551e-17),4) 
team           0.2687 
management     0.7234
regression model: -
project_perf = 0.2687 * team + 0.7234 * management
check the relative importance of the factors: -
The coefficient 'management' (0.7234) > that of 'team' (0.2687). Therefore, 
the variance in the factor 'management' influences 'project_perf', more than 
the factor 'team'
Note: - 
1) Both team, and management are measured using variables on a scale of 1 ... 
7; otherwise, we need to standardize them before regression.
2) The model performance with the 3-factor model (Adj. R-squared = 0.505) 
is less than that of the 9-variable model. See the note at the beginning of 
the tutorial

7.4  Confirmatory Factor Analysis

Confirmatory Factor Analysis (CFA) aims to uncover hidden factors that influ-
ence the observed variables without assuming anything about specific variations 
or measurement errors. CFA focuses only on the shared variance among variables. 
CFA is a good choice when a researcher already understands the underlying factor 
relationships and wants to confirm if their model is valid. The researchers use prior 
knowledge and theories to predict how the observed measurements are related to 
these underlying factors and then test these predictions with statistical methods.

7.4 Confirmatory Factor Analysis



232 7 Factor Analysis

Structural Equation Modeling (SEM) is widely used in various fields, including 
psychology, sociology, economics, and other social sciences, as well as in biology, 
marketing, and other disciplines where complex relationships among variables 
must be examined. It offers a flexible and powerful tool for hypothesis testing and 
model validation.

The SEM is a statistical tool that validates structural theories. SEM permits the 
inclusion of numerous interconnected relationships within a single model. In con-
trast to other statistical methods, SEM can simultaneously estimate and connect 
multiple equations. This means that the results from one equation can serve as the 
input for other equations. This versatility empowers researchers to analyze com-
plex relationships that might be challenging with other approaches. Additionally, 
researchers can use the factor structure derived from Principal Component 
Analysis as a foundation for creating their SEM model (Hair et al. 2010; Malhotra 
2020). The components of SEM are listed below:

• The structural model represents the relationships among latent variables.
• The measurement model describes the relationships between latent variables 

and their observed indicators.
• Error terms account for unobserved influences on the observed variables.
• Various fit indices, such as chi-square, comparative fit index (CFI), tucker-lewis 

index (TLI), root mean square error of approximation (RMSEA), etc., to assess 
how well the model fits the observed data.

• The path diagrams visually depict the relationships between observed and 
latent variables through arrows and paths.

Let us consider the software project discussed in Sect. 7.2 and demonstrated 
in Sect. 7.10, the project performance case study. We considered 11 input varia-
bles and 100 software projects. However, in the current example, we consider 31 
variables influencing software project performance and 145 software projects to 
demonstrate SEM modeling. For detailed information about the method used, refer 
to Sundararajan et al. (2019).

Initially, the data were subjected to Principal Component Analysis with 
Varimax rotation. Three variables were found trivial and discarded. Nine latent 
constructs (factors) emerged from the PCA, underlying 28 variables. The the-
oretical model proposed above, with specified relationships between latent and 
observed variables, was presented to SEM to test whether the data (observations 
from 145 projects) support the proposed model.

Seven factors emerged from the SEM model as shown in Fig. 7.6. It comprises 
of eight latent factors—resource competency (1), project planning and governance 
(2), resource motivation (3), quality of build (4), training (5) quality of test (6), 
change management (7), and project methodology (8). The variable-factor load-
ings show the covariance of the variables. The factors, in turn, predict effort vari-
ance, using a regression model. Note that effort variance is a commonly accepted 
measure of software project performance.



233

Table 7.5  Statistics for goodness of fit in the CFA case study

Statistic Fit index Measures Observed value Acceptable values for 
“good” model fit

1 CMIN/df χ2 value and the 
associated degree of 
freedom

1.93 Less than 5 indicates a 
good fit; less than 3 very 
good fit

2 CFI Incremental fit index; 
the badness of fit index

0.83 Above 0.90 indicates a 
good fit

3 RMSEA Absolute fit index 0.08 Less than 0.08 indicates 
a good fit

As we mentioned earlier, the overall fit of an SEM model is assessed using sev-
eral measures of fit. Typically, we may consider a set of statistics such as the χ2 
value and the associated degree of freedom, one of the absolute fit indices, one 
of the incremental fit indices, and one of the badness of the fit index. Some of the 
important statistics observed (Sundararajan et al. 2019) are shown in Table 7.5.

Summary

Factor analysis is a broad term encompassing a set of procedures primar-
ily employed to condense and summarize data. Principal component analysis 
(PCA), a widely used technique within factor analysis, examines the overall vari-
ance exhibited by variables. Through orthogonal rotation, uncorrelated factors are 
generated from the factor loading matrix, employing methods such as Varimax, 
Equimax, or Quartimax. Varimax rotation typically yields factors characterized by 
high loadings from a smaller set of variables, with low loadings expected for other 
variables, enhancing factor interpretability.

The factor loading matrix contains simple correlations between all variables 
and the extracted factors. Communality denotes the variance shared by a variable 
with all other variables, while eigenvalues signify the total variance explained by 
each factor. Before conducting factor analysis, assessing the data’s suitability is 
crucial. Bartlett’s test of sphericity examines whether there are adequate correla-
tions among variables for grouping into factors. The Kaiser–Meyer–Olkin (KMO) 
statistic gauges sampling adequacy by indicating the proportion of variance in 
variables potentially caused by underlying factors. Cronbach’s alpha is a reliable 
measure of internal consistency.

7.4 Confirmatory Factor Analysis



234 7 Factor Analysis

Confirmatory Factor Analysis (CFA) does not make any assumptions about 
specific variance and error variance. The CFA focuses solely on common vari-
ance. Structural Equation Modeling (SEM), a multivariate statistical methodol-
ogy, adopts a confirmatory approach to analyze structural theories. SEM enables 
researchers to incorporate multiple interrelated dependence relationships within a 
single model.

Questions

Comprehension

1. Describe the use of Eigen Value Analysis in Principal Component Analysis.
2. Write a note on orthogonal rotation and the principal components that emerge 

from orthogonal rotation.
3. List the tests for validity and reliability in Factor Analysis.
4. How do we determine the number of factors extracted in Principal Component 

Analysis?
5. Describe the steps in Factor Analysis.
6. Describe Confirmatory Factor Analysis using SE.

Analysis

 7. Compare and contrast Exploratory Factor Analysis with Confirmatory Factor 
Analysis.

 8. How does factor analysis help in data reduction and summarization? Can you 
provide a real-world example where this technique is beneficial?

 9. How is data standardization achieved in PCA, and why is it important for the 
analysis?

 10. Describe the role of factor loadings in factor analysis. How do positive and 
negative factor loadings impact the interpretation of the results?

 11. How does the choice of orthogonal rotation method (e.g., Varimax, Equimax, 
Quartimax) in factor analysis impact the interpretability of the derived 
factors?

 12. Explain the concept of Cronbach’s alpha and its relevance in factor analysis. 
How can it be used to assess the reliability of a set of variables?

 13. In factor analysis, what is meant by the Kaiser–Meyer–Olkin (KMO) measure 
of sampling adequacy, and how does it affect the analysis?

 14. Can you illustrate the differences between specific, common, and error var-
iance in the context of factor analysis? How are these types of variance 
related?

 15. In the context of factor analysis, why is the design of the measurement instru-
ment crucial? How does the selection of variables and measurement scales 
impact the success of factor analysis?



235

 16. Explain the significance of data validation in the factor analysis pro-
cess. What are the key criteria, such as Bartlett’s test of sphericity, Kaiser–
Meyer–Olkin’s measure, and Cronbach’s alpha, in ensuring data quality and 
representativeness?

 17. What is the role of factor loadings in factor analysis, and how do they help 
understand the relationships between variables and underlying factors? 
Provide an example from the case study.

 18. In the factor analysis procedure, how does the iterative process of removing 
variables with low factor loadings contribute to refining the factor structure?

 19. Discuss the methods for determining the number of factors in factor analysis.
 20. Evaluate the success of the factor analysis in the case study based on the total 

variance explained. Is a 54% explanatory power considered good, and what 
factors might influence this result?

Application

21. Imagine you are working with a dataset from a marketing research study. How 
could factor analysis be applied to identify key customer segments or factors 
influencing purchase decisions?

22. Suppose you are a financial analyst working with stock market data. How 
might PCA be used to summarize and analyze the relationships between dif-
ferent stocks and identify latent factors affecting stock prices?

23. You are tasked with analyzing employee satisfaction data in a large organiza-
tion. How could factor analysis be applied to uncover key factors contributing 
to employee well-being and engagement?

24. Imagine you are working on customer feedback data for a restaurant chain. 
How could factor analysis help identify areas for improvement, such as ser-
vice quality, food quality, or ambiance, based on customer responses?

25. You are a researcher in the field of psychology studying personality traits. 
Explain how factor analysis can be applied to identify underlying personality 
factors and assess their correlations with behaviors and life outcomes.

26. In a customer churn analysis for a telecommunications company, how could 
factor analysis help identify factors contributing to customer attrition and 
inform customer retention strategy?

27. See the results below from the Principal Component Analysis. Interpret the 
observations in each table. Write the equations for computing Factor Scores 
(Table 7.6).

Questions



236 7 Factor Analysis

Table 7.6  Principal component analysis exercise

KMO and Bartlett’s test

Kaiser–Meyer–Olkin measure of sampling adequacy 0.69

Bartlett’s test of sphericity significance 0.04

Factor loading matrix

Factor-> 1 2 3

Var_a 0.49 0.16 0.46

Var_b −0.10 0.23 0.80

Var_c 0.40 0.57 0.37

Var_d 0.51 0.48 0.32

Var_e −0.06 0.80 0.08

Var_f 0.28 0.79 0.09

Var_g 0.76 0.10 0.32

Var_h 0.77 0.17 0.30

Var_i 0.86 0.06 0.02

Var_j 0.63 0.44 0.08

Var_k 0.84 0.17 −0.03

Var_l 0.45 0.00 0.65

Total variance explained

Factor Eigen value % of variance explained Cumulative 
%

1.00 3.97 33.06 33.06

2.00 2.15 17.93 50.99

3.00 1.72 14.31 65.30

Overall reliability statistics

Cronbach’s alpha Number of variables

0.87 12.00

Exercises

Exercise 7.1 Factor Analysis (Principal Component Analysis)
Do Factor Analysis of Diamonds Dataset, using PCA. Consider all variables other 
than ‘price’ for PCA. See Sect. 1.6 for a brief description of the diamonds dataset.

Exercise 7.2 Use Factor Scores for Predicting Diamond Prices
Perform regression analysis to predict diamond prices based on factor scores. 
Compare the result with regression analysis using the observed variables as inputs. 
Explain the finding.

http://dx.doi.org/10.1007/978-981-99-0353-5_1


237

References

Hair JF, Black WC, Babin BJ, Anderson RE (2010) Multivariate data analysis. In: Vectors. 
https://doi.org/10.1016/j.ijpharm.2011.02.019

Malhotra NK (2020) Marketing research an applied orientation, 7th edn. Pearson Education
Strang G (2022) Introduction to linear algebra. Wellesley-Cambridge Press
Sundararajan S (2021) Business analytics-overview, curriculum, opportunities and skills. 

Researchgate.Net
Sundararajan S (2023) MVA-ML. https://github.com/sun-sri/MVA-ML
Sundararajan S, Marath B, Vijayaraghavan PK (2019) Variation of risk profile across software 

life cycle in IS outsourcing. Softw Qual J 27(4). https://doi.org/10.1007/s11219-019-09451-8

References

http://dx.doi.org/10.1016/j.ijpharm.2011.02.019
https://github.com/sun-sri/MVA-ML
http://dx.doi.org/10.1007/s11219-019-09451-8


239

Learning Objectives

• Examine the basic concepts of cluster analysis.
• Discuss and demonstrate hierarchical cluster analysis.
• Discuss and demonstrate partitioning methods.
• Discuss and demonstrate the performance evaluation of cluster analysis.
• Acquire familiarity with advanced cluster analysis methods.

Overview

Cluster Analysis has important applications in almost all areas, such as busi-
ness (e.g., customer segmentation), social network analysis, recommendation 
systems, information retrieval, information security, computational biology, and 
climatology.

The chapter starts with an overview of cluster analysis and the methods/pro-
cedures for cluster analysis. An exposition of hierarchical methods, partitioning 
methods, and distance measurements follows this. We then explore the perfor-
mance evaluation of clustering methods in detail and discuss advanced cluster 
analysis methods.

Chapter 8
Cluster Analysis

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_8

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_8.

https://doi.org/10.1007/978-981-99-0353-5_8#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_8&domain=pdf


240

Definitions

Agglomerative clustering: Agglomerative hierarchical clustering uses a bot-
tom-up strategy. It starts by placing each object as an individual cluster. Then, it 
merges these atomic clusters into larger and larger clusters, iteratively, until all the 
objects are in a single cluster or until certain termination conditions are satisfied. 
Termination conditions can be a pre-specified number of clusters, a specific num-
ber of iterations, or the diameter of clusters reaching a certain threshold.
Calinski-Harabasz index: The Calinski-Harabasz index is the ratio of the sum of 
between-clusters dispersion to the sum of inter-cluster dispersion for all clusters. 
It is also called the Variance Ratio Criterion. A higher score implies better-defined 
clusters.
CLARANS method: The k-medoids method is expensive with large datasets 
and numerous features. We can use data samples rather than the entire dataset. 
CLARANS (Clustering Large Applications based upon RANdomized Search) is a 
trade-off between the cost and the effectiveness of using samples.
Cluster analysis: Cluster analysis is a class of techniques used to group objects or 
cases into relatively homogeneous groups called clusters. Objects in each cluster 
tend to be similar to each other and dissimilar to objects in other clusters.
Dendrogram: A tree structure called a dendrogram is commonly used to represent 
the process of hierarchical clustering. It shows how objects are grouped step by step. 
Dendrogram helps us to have an idea of cluster division. However, it does not give 
us an idea of the spatial distribution of clusters or the number of optimal clusters.
Density-based clustering: Density-based clustering identifies clusters of arbitrary 
shapes in a dataset, assuming that a cluster in a data space is a contiguous region 
of high data-point density, separated from other clusters by contiguous regions of 
low data-point density. Examples: - DBSCAN, OPTICS, and DENCLUE.
Divisive clustering: Divisive clustering starts with the entire dataset that is pro-
gressively split into multiple groups iteratively until each object is in a separate 
cluster of its own or until it satisfies certain termination conditions. See agglomer-
ative clustering for termination condition.
Fowlkes-Mallow's Index: The Fowlkes-Mallows Index (FMI) is the geometric 
mean of the pairwise precision and recall. The score ranges from 0 to 1. A high 
value indicates a good similarity between a pair of clusters.
Hierarchical clustering: In hierarchical clustering, we group objects into a tree of 
clusters. Generally, there are two hierarchical clustering methods——agglomera-
tive and divisive.
K-medoids method: In the k-means algorithm, the cluster center is computed as 
the arithmetic mean of the coordinates of all objects in a cluster. It is, therefore, 
sensitive to outliers. An almost centrally located actual object may be considered 
instead. Such a point is called medoid, and the method is called the k-medoids 
method.
Normalized mutual information (NMI): Mutual Information or Normalized 
Mutual Information measures the agreement of clusters with ground truth labels 
with the predicted cluster solution.

8 Cluster Analysis 



241

Partitioning method: In the partitioning method, k-objects selected randomly rep-
resent the initial cluster centers. All other objects are assigned to the nearest clus-
ters. The cluster center is recomputed, and objects are reassigned to new clusters 
iteratively.
Probability model-based clustering: The probability model-based clustering 
method assumes a cluster is a parameterized distribution.
Rand index: The Rand index, or the adjusted Rand index, measures the similarity 
of clusters with ground truth labels with the predicted cluster solution.
Silhouette coefficient: The silhouette coefficient is calculated using the mean 
intra-cluster distance and the mean nearest-cluster distance. The score varies from 
−1 to + 1. High positive scores indicate dense and well-separated clusters.
STING method: STING is a grid-based multi-resolution clustering technique. In 
this method, there are several levels of cells with increasing levels of resolution 
from top to bottom. Statistical information of each cell is calculated and stored 
beforehand and is used to answer queries.
V-measure: The V-measure is equivalent to normalized mutual information (NMI). 
V-measure is the harmonic mean of homogeneity and completeness.
Ward's method: Ward’s method is a commonly used, variance-based method for 
agglomeration clustering. The squared Euclidean distance to the respective cluster 
means is calculated for each object. At each stage, the two clusters with the small-
est increase in the sum of squares within-cluster distances are combined.

8.1  An Overview of Cluster Analysis

Cluster analysis is a class of techniques used to group objects or cases into 
relatively homogeneous groups called clusters. Objects in each cluster tend to be 
similar to one another and dissimilar to objects in other clusters. Similarities are 
computed in terms of proximity between the feature values (X1 … Xk).

8.1.1  Proximity Measures

8.1.1.1  Common Measures

Some of the proximity measures used for clustering are listed below (Han and 
Micheline Kamber, 2014).

• Euclidean, Manhattan, and Minkowski are common distance measures for 
numeric data.

• Cosine similarity helps compare rankings (e.g., recommendation systems, doc-
ument ranking based on term frequency, etc.). The cosine similarity between 
vectors X and Y is computed as the ratio of the dot product of X and Y divided 

8.1 An Overview of Cluster Analysis



242 8 Cluster Analysis 

P.L P.W species

[ 1.4 0.2  ] blue
[ 1.4 0.2  ] blue
[ 1.3 0.2  ] blue
[ 1.5 0.2  ] blue
... ... ...

[ 5.0 1.9  ] green
[ 5.2 2.0  ] green
[ 5.4 2.3  ] green
[ 5.1 1.8  ] green

(b) Comparison of Three Different Distance Measures

Fig. 8.1  Popular distance measures

by the L2 norms of X and Y. See Fig. 8.1b. The use of cosine similarity is 
demonstrated in Sect. 10.4, recommendation systems. Cosine distance is equal 
to 1 minus cosine similarity.

• Jaccard distance can be used for comparing asymmetric binary vectors, show-
ing the presence or absence of features as bit strings. Jaccard similarity (A, 
B) = (A and B)/(A. or. B)

• Edit distance can be used to compare two strings.
• TF.IDF (Term Frequency times Inverse Document Frequency) is used to com-

pare the similarity of documents based on the relative frequency of the terms 
used and the rarity of the terms.

• Hamming distance can be used for error correction in data communication.

Cosine similarity(X,Y) = X.Y/||X||.||Y||



243

L1 and L2 Norms

L1 norm, also known as the Manhattan distance, measures the sum of the absolute 
differences between the corresponding components of two vectors. An example is 
the distance we travel from one point to another in a city, where we can only move 
along the streets in a grid-like fashion (horizontally and vertically), not through 
buildings and walls. L2 norm or the Euclidean Distance calculates the square 
root of the sum of the squared differences between the corresponding compo-
nents of two vectors. It represents the straight-line distance between two points in 
a Cartesian coordinate system. The Minkowski distance is a generalized distance 
metric that measures the dissimilarity between two data points in a multi-dimen-
sional space. It incorporates both the L1 (Manhattan distance) and L2 (Euclidean 
distance) norms as special cases, making it a flexible distance metric.

Euclidean distance is the most popular distance measure (the straight-line 
distance between two data objects). Figure 8.1a shows Iris Flower Clusters in 
Euclidean space, based on two dimensions——petal length and width. Figure 8.1b 
compares Manhattan, Euclidean, and Cosine distance measures.

Let X1 and X2 be two data objects having k numeric features. The Euclidean 
distance between X1, X2 can be expressed as follows

Examples Euclidean Distance between two points (0,1) and (2,3)

= (0−2)2 + (1−3)2 = 4 + 4 = 8
Euclidean Distance between two points (1, 3, 5) and (4, 8, 16)
= (1−4)2 + (3−8)2 + (5−16)2= 9 + 25 + 121 = 155

Various Methods for Classification

Numerous methods are available for cluster analysis. Some of these methods are 
mentioned below. In this chapter, we will focus on Hierarchical and Partitioning 
Methods. The other methods are given a passing mention in Sect. 8.6

• Hierarchical Methods
• Partitioning Methods
• Density-based Methods
• Grid-based Methods
• Probability-model-based clustering
• Clustering high dimensional data
• Clustering Large Datasets
• Clustering Graphs and Network Data

Distance (X1,X2) =
√
[
(
X1

1−X1
2

)2 +
(
X2

1−X2
2

)2+ · · · +
(
Xk

1−Xk
2

)2]

8.1 An Overview of Cluster Analysis



244 8 Cluster Analysis 

8.1.2  Challenges in Cluster Analysis

Let us briefly examine the challenges in cluster analysis (Han and Micheline 
Kamber, 2014). Many clustering algorithms are effective with small datasets and 
a few features. In practice, we face datasets of a million rows and/or high dimen-
sionality (several attributes). Therefore, we need scalable clustering algorithms. 
Many algorithms rely on numeric measurements and Euclidian distance. However, 
we must work with binary data, categories, densities, and network graphs. 
Common clustering algorithms tend to cluster in hypersphere; however, clusters 
may have irregular shapes.

Real-world datasets contain outliers or missing/unknown/noisy data, which can 
skew the results (see Sect. 2.8.2). The clustering results can be sensitive to input 
parameters and the order of data. Domain knowledge is necessary to determine 
the number of desirable clusters and for feature selection (especially for objects 
with several attributes). The clustering results must be interpretable and usable in 
practice.

In the case of fuzzy datasets, the data points may belong to multiple clusters 
to varying degrees. Various algorithms exist for fuzzy clustering, such as fuzzy 
C-Means (FCM) and probabilistic C-Means (PCM), though choosing the right 
algorithm for meaningful clustering is a challenge. Interpretability and scalability 
(as the data size increases) are some of the other major challenges faced.

8.1.3  General Procedure for Cluster Analysis

Feature Selection

The researcher must exercise care in selecting relevant features, for which she/he 
must properly understand the theoretical basis of the problem (Malhotra, 2020). 
Irrelevant features must be avoided, as they may distort the clustering solution. To 
the extent possible, we need a comprehensive set of features to define the phenom-
enon under investigation. For example, we need to measure financial, functional, 
service, and psychological features to study how a product can be positioned in a 
competitive market. The selected features must be able to describe the similarity 
and dissimilarity between the data objects.

The Right Number of Clusters

Hierarchical and nonhierarchical methods must be used together to arrive at the 
right number of clusters. Initially, hierarchical clustering analysis is done to under-
stand the underlying structure. Note that the solution may depend on the order of 
cases in the dataset.



245

Determining the optimal number of clusters lacks quick fixes. Both theoreti-
cal and practical considerations should guide this process. In hierarchical cluster-
ing, the distances at which clusters merge serve as criteria for determining cluster 
count, extractable from the agglomeration schedule or dendrogram. Conversely, 
nonhierarchical clustering involves plotting the ratio of total within-group variance 
to between-group variance against cluster numbers, allowing identification of the 
suitable cluster count, as detailed in the discussion on the scree plot. Additionally, 
assessing the relative sizes of clusters from various solutions and employing 
diverse performance measures is crucial. The cluster shape is also important——it 
varies with the addressed phenomena.

8.2  Hierarchical Methods

In hierarchical clustering, we group objects into a tree of clusters. Generally, 
there are two hierarchical clustering methods——agglomerative and divisive.

8.2.1  Agglomerative/Divisive Clustering

Agglomerative hierarchical clustering employs a bottom-up approach, com-
mencing by assigning each object as a distinct cluster. Subsequently, it system-
atically merges these initial clusters into increasingly larger ones until all objects 
are part of a single cluster or specific termination conditions are met. In contrast, 
divisive clustering initiates with the entire dataset. It iteratively divides it into mul-
tiple groups until each object resides in a separate cluster or until pre-determined 
termination conditions are fulfilled. These termination conditions may include a 
pre-determined cluster count, a specified number of iterations, and the diameter of 
clusters reaching a certain threshold, among other criteria.

8.2.2  Dendrogram

A tree structure called a dendrogram is commonly used to represent the pro-
cess of hierarchical clustering. It shows how objects are grouped step by step. For 
example, Figs. 8.2 and 8.3  shows the dendrogram generated during the clustering 
of iris flowers. The X-axis represents the leaf nodes and the number of objects in 
the leaf. The horizontal lines of the grid divide the data into a specific number of 
clusters. The grid line through (Y = 15) divides the data into two clusters—the yel-
low ones and the green ones. Figures 8.2 and 8.3a and b show the agglomeration 
of data points into bigger and bigger clusters.

8.2 Hierarchical Methods



246 8 Cluster Analysis 

Fig. 8.2  Dendrogram

Fig. 8.3  Three clusters solution and six clusters solution

The Y-axis measure helps to quantify the relative distance between a pair of 
child clusters. From a visual check of Fig. 8.3a, we find that the inter-cluster dis-
tance between the first cluster of 21 flowers and the second cluster of 29 flowers is 
4. Similarly, the inter-cluster distance between the third cluster of 24 flowers and 
the fourth cluster of 12 flowers is 5.

Dendrogram helps us to have an idea of cluster division. However, it does not 
give us an idea of the spatial distribution of clusters or the number of optimal clus-
ters. Usually, the ideas gained from hierarchical clustering (e.g., the distribution 
of objects in each cluster) are used along with k-means clustering analysis to get a 
better picture.

8.2.3  Distance Measures in Hierarchical Clustering

The distance measures used in hierarchical and k-means clustering are differ-
ent. We will see some popular hierarchical clustering methods—centroid, linkage, 
and variance method (Malhotra, 2020).



247

Centroid Method

In the centroid method, the distance between two clusters is the distance between 
their centroids. The cluster centroid is a k-dimensional vector formed by the 
means of each of the ‘k’ feature variables. During the agglomeration process, the 
centroid is recomputed after each re-grouping of objects.

Linkage Methods

The single linkage method is based on minimum distance or the nearest neigh-
bor rule—the distance between two clusters is the distance between the two clos-
est objects (each object chosen from each cluster). The steps in the single linkage 
method are shown below.

1. Start with one cluster for each point (sum of squares = 0).
2. Merge two clusters with the smallest gap (distance between the two closest 

points) between them.

Repeat steps 1 and 2 until k clusters emerge.
Single-link clustering can handle any cluster shape. However, it does not give 

due diligence to the emergence of cluster shape or balance of cluster sizes.
In complete linkage, the distance between two clusters is the distance between 

the two furthest objects (each object chosen from each cluster). In the average 
linkage method between two clusters, we make pairs of objects taken one from 
each cluster; the average distance between all such pairs is computed.

Variance Methods

The variance methods attempt to generate clusters that minimize the within-clus-
ter variance. A commonly used variance method is Ward's method. The actions 
involved are:-

• Computation of Cluster Means: The mean of the feature variables vector is cal-
culated for each cluster. This mean represents the central tendency of the data 
points within that cluster.

• Calculation of Squared Euclidean Distances: For each object (data point), the 
squared Euclidean distance between the object and the mean of the cluster to 
which it belongs is computed. Euclidean distance measures the straight-line 
distance between two points in space.

• Summation of Distances: The squared Euclidean distances calculated for all 
objects in all clusters are summed. This provides a measure of the total with-
in-cluster variance, representing how spread out the data points are within each 
cluster.

• Cluster Merging: At each stage of the clustering process, the two clusters that, 
when combined, result in the smallest increase in the overall sum of squares 

8.2 Hierarchical Methods



248 8 Cluster Analysis 

of within-cluster distances are merged. This helps in gradually forming clusters 
that minimize the total within-cluster variance.

The three-step procedure for merging clusters to arrive at optimal clusters is 
shown below.

1. Start with one cluster for each point (sum of squares = 0).
2. Merge two clusters, which results in the smallest increase in the sum of squares 

(of the distance between objects and the merged cluster mean). The sum of 
squares can be called merge cost. We must consider all possible pairs of clus-
ters for merging.

3. Repeat steps 1 and 2 until k clusters emerge or the merging cost is beyond a 
limit.

In the sum of squares method, distances are measured equally in all directions. 
Therefore, the clusters that emerge will be round or spheroid. However, in prac-
tice, clusters do not come in regular spheroid shape. Therefore, the solution may 
not be accurate.

Tutorial 8.2 Hierarchical Clustering

Tutorial 8.2.1 Data Setup and Visualization

import pandas as pd
import seaborn as sb
pdf = sb.load_dataset('iris')
X = pdf.drop('species',axis=1)

Scatter Plot
sb.scatterplot(x='petal_length',y='petal_width', data=pdf, hue='species')

frequency distribution of all four measures
sb.kdeplot(data=pdf) 

Tutorial 8.2.2 Dendrogram

import scipy.cluster.hierarchy as shc 
import numpy as np
import matplotlib.pyplot as plt

plt.figure(figsize=(4,4))  # default 6.4 width, 4.8 height
yTicks=np.arange(0,20,5)
plt.yticks(yTicks, fontsize=14)
plt.grid()
plt.title('3 cluster solution', fontsize=14)
dend = shc.dendrogram((shc.linkage(X, method ='ward')),
                      p = 3, truncate_mode='lastp')

See Figure 8-3 (b): 3 cluster solution 



249

plt.title('6 cluster solution', fontsize=14)
dend = shc.dendrogram((shc.linkage(X, method ='ward')),
                      p = 6, truncate_mode='lastp')

See Figure 8-3 (c): 6 cluster solution

plt.figure(figsize=(12,4))  # default 6.4 width, 4.8 height
plt.grid()
plt.title('Dendogram', fontsize=14)
plt.ylabel('Cluster Distance', fontsize=14)
plt.xlabel('Leaf Nodes', fontsize=14)
dend = shc.dendrogram((shc.linkage(X, method ='ward')),
                      truncate_mode='lastp')
xTicks=np.arange(0,1,1)
plt.xticks(xTicks)
plt.show()

See Figure 8-2: Dendrogram

8.3  Partitioning Methods

Partitioning Methods are about dividing the dataset into a specific number of 
clusters based on some criterion. There are various methods for partitioning, such 
as k-means, k-medoids, and CLARANS. We will briefly discuss these methods.

8.3.1  K-Means Method

The k-means algorithm iteratively refines the clusters by adjusting the cluster 
centers based on the mean of the objects within each cluster, aiming to optimize 
the overall similarity or distance criterion.

Given a dataset D with n objects and a specified number of clusters, k, a parti-
tioning algorithm arranges the objects into k partitions (where k < n), each repre-
senting a cluster. The formation of these clusters is guided by the optimization of 
an objective function, often based on similarity or distance. The aim is to ensure 
that objects within a cluster are considered ‘similar,’ while those in different clus-
ters are deemed ‘dissimilar’ based on the dataset's attributes.

Let Ci be a cluster with ĉi as the center. Let ‘o’ be an arbitrary object in that 
cluster. The objective function can be expressed as:-

The algorithm is outlined:

1. Randomly choose k-objects, which serve as the initial cluster centers for the k 
clusters.

2. Assign all remaining objects to the cluster that is closest to them, determined 
by the distance between the object and the cluster mean.

Minimize E = �k
i=1�o∈Ci

(o− ĉi)
2

8.3 Partitioning Methods



250 8 Cluster Analysis 

3. Recalculate the mean for each cluster.
4. Iterate through Steps 2 and 3 until the criterion function converges. The criteria 

for convergence can be set as one of the following: (a) a fixed number of itera-
tions, (b) partitions remaining unchanged, or (c) cluster centers not changing.

8.3.2  K-Medoids Method

The k-means algorithm is sensitive to outliers. The cluster center is computed 
as the arithmetic mean of the coordinates of all objects in a cluster. Outliers can 
skew the computation of the mean value. Therefore, an almost centrally located 
actual object may be considered the central reference point of a cluster. Such a 
point is called medoid, and the method is called the k-medoids method. The k-me-
doids algorithm is described.

1. Initialization: Randomly select ‘k’ objects from the dataset as initial medoids.
2. Assignment: Assign each remaining object in the dataset to the cluster whose 

current medoid is the closest (based on a chosen distance metric).
3. Update Medoids: Calculate the total cost (or distance) of all objects to the cur-

rent medoid for each cluster. For each object in the cluster, swap it with the 
medoid and calculate the total cost. If the swap reduces the total cost, update 
the medoid to be the object with the minimum total cost within the cluster.

4. Repeat the Assignment and Update Medoids steps until convergence criteria are 
met (e.g., no further changes in medoids or a specified number of iterations 
have been reached).

The key difference between k-means and k-medoids lies in how the cluster 
center is updated. In k-means, the center is the mean of the points in the cluster, 
while in k-medoids, the center is one of the actual data points. This makes k-me-
doids more robust to outliers, as extreme values affect the medoid less.

8.3.3  CLARANS Method

The k-medoid method is expensive with large datasets and/or numerous fea-
tures. We can use data samples rather than the entire dataset, but the effectiveness 
will depend on the sample size. CLARANS (Clustering Large Applications based 
upon RANdomized Search) is a trade-off between the cost and the effectiveness of 
using samples.

This method randomly selects ‘k’ objects as the medoids. Then we randomly 
select a medoid ‘mi,’ and an object ‘o’ that is not designated as a medoid. Check 
whether replacing ‘mi’ with ‘o’ improves the optimizing criterion. If yes, replace 
mi with ‘o’. Repeat this process a specific number of times. The result is the best 
local optimum solution.



251

The key idea behind CLARANS is to explore different potential cluster config-
urations by iteratively considering random medoid-object pairs. This randomiza-
tion allows the algorithm to escape local optima and find a solution that might be 
more globally optimal. By operating on a subset of the data through random sam-
pling, CLARANS achieves computational efficiency, making it more feasible for 
large datasets. The effectiveness of CLARANS depends on the balance between 
the number of iterations performed and the quality of the random sampling. A 
larger number of iterations increases the likelihood of finding a better solution but 
also incurs more computational cost.

The algorithm offers a practical compromise for cases where the full dataset is 
too large to handle directly with traditional k-medoid methods.

8.3.4  Distance Measures in Partitioning Methods

As mentioned earlier, the distance measures used in hierarchical and k-means 
clustering differ. The distance measures used in k-means clustering include 
sequential threshold, parallel threshold, and optimizing partitioning.

In the sequential threshold method, the process begins by arbitrarily choos-
ing an object as a cluster center. All objects within a pre-determined threshold 
distance from this initial object are grouped to create a cluster. Once clustered, 
these objects are considered fixed. Another object is selected from the remaining 
un-clustered objects, reiterating the process.

The parallel threshold method involves simultaneously selecting multiple clus-
ter centers. Objects within a specified threshold distance from each chosen center 
are grouped with their respective nearest center.

Objects can be reassigned to different clusters to optimize a global criterion in 
the optimizing partitioning method. This method involves adjusting cluster assign-
ments to enhance the overall performance of the clustering solution.

8.4  Performance Evaluation

There are several measures for determining the performance of cluster analysis. 
If the data labels are not known, we may use measures such as the silhouette coef-
ficient (Jiawei Han, Micheline Kamber, 2014) and the Calinski-Harabasz index 
(Halkidi et al., 2001). If data labels are available for the training dataset, meas-
ures such as Fowlkes-Mallow's score, rand index, normalized mutual information 
(NMI), adjusted mutual information (AMI), V-measure, etc. may be used. A scree 
plot can determine the effective number of clusters, built on the ratio of inter-clus-
ter to intra-cluster variance.

8.4 Performance Evaluation



252 8 Cluster Analysis 

Fig. 8.4  K-Means silhouette score

8.4.1  Silhouette Coefficient

The silhouette coefficient of an object is calculated using the mean intra-cluster 
distance and the mean nearest-cluster distance. This can be expressed as,

where:
‘a’ is the Mean distance of an object with all other objects in the same cluster,
‘b’ is the mean distance of an object with all other objects in the next nearest 

cluster.
The average silhouette coefficient value of all the objects in a cluster indicates 

the goodness of fit of that cluster. The average of the silhouette coefficient values 
of all the objects over all the clusters taken together indicates the fitness of the 
clustering solution.

The score varies from −1 to + 1. High positive scores indicate dense and 
well-separated clusters. Scores around zero indicate overlapping clusters. A neg-
ative value indicates incorrect clustering. Figure 8.4 shows that 2-cluster, 3-clus-
ter, 4-cluster, and 5-cluster solutions are relatively better. Then, we find the score 
dropping steeply.

8.4.2  Calinski-Harabasz Index

The Calinski-Harabasz index (CH) is the ratio of the sum of between-clusters 
dispersion (SSB) to the sum of inter-cluster dispersion (SSW) for all clusters. It 
is also called the Variance Ratio Criterion. A higher score implies better-defined 
clusters. Assume a dataset with N objects with ĉ as the overall cluster center. Let 
oj be an arbitrary object.

S =
b− a

max(a, b)



253

Fig. 8.5  K-means Calinski-Harabasz score

As we saw in the criterion function stated in the section on k-means, assume 
k clusters, let Ci be a cluster with ĉi as the center, and ‘o’ be an arbitrary object in 
that cluster. Then SSW can be expressed as follows:-

Figure 8.5 shows that 2-cluster, 3-cluster, 4-cluster, and 5-cluster solutions have 
relatively better scores, after which the scores drop steeply. The 3-cluster solution 
is observed to be the best.

8.4.3  Evaluation of the Quality of Clustering

If we know the target labels, we can evaluate the effectiveness of the cluster-
ing solution that has emerged from cluster analysis. The metrics include Fowlkes-
Mallow’s score, Rand index, Normalized mutual information (NMI), Adjusted 
mutual information (AMI), V-measure, etc. We will take a brief look at these 
measures. See Tutorial 8.5/Fig. 8.6.

Confusion Matrix

Let us recap the confusion matrix, covered in the chapter ‘Classification’. 
See Table 8.1. Here TP is the count of True Positives, FP is the count of False 
Positives, FN is the count of False Negatives, and TN is the count of True 
Negatives. Common performance measures include Precision, Recall, Accuracy, 

SSB(SSbetween) = �N
j=1(oj − ĉ)

2
with k − 1 degrees of freedom

SSW(SSwithin) = �k
i=1�o∈Ci

(o− ĉi)
2 with n − k degrees of freedom

CH =
SSB

SSW

(n − k)

(k − 1)

8.4 Performance Evaluation



254 8 Cluster Analysis 

Fig. 8.6  Clustering scores 
when ground truth is known

Table 8.1  Confusion matrix—when ground truth is known

Predicted labels

1 0

Observed 
labels

1 True Positives (TP) False Negatives (FN) R (Recall) =  TP / 
(TP + FN)

0 False Positives (FP) True Negatives (FN) FMI = √(PR) Geometric 
mean

P (Precision) =  TP / 
(TP + FP)

Arithmetic 
Mean = (P + R) / 2

F1 Score = 2PR / (P + R) 
Harmonic mean

F1 Score, and FMI. It is the prerogative of the researcher to choose the appropriate 
score for performance rating.

Fowlkes-Mallow’s Index (FMI)

The Fowlkes and Mallows Index (FMI) is defined as the geometric mean of the 
pairwise precision and recall, as expressed below. The score ranges from 0 to 1. A 
high value indicates a good similarity between a pair of clusters. Based on Table 
8.1, FMI can be expressed as follows. 

the FMI =
√
Precision ∗ Recall

=
√
TP/(TP + FP) ∗ TP/(TP + FN)

= TP/
√
(TP + FP)(TP + FN)



255

Rand Index

Rand index or the adjusted rand index, measures the similarity of clusters with 
ground truth labels with the predicted cluster solution, ignoring permutations and 
with chance normalization.

For a sample size of n, the total number of pairs of data objects = nC2.

Let CG be the actual clustering of data objects with known ground truth labels. 
Let CP be the predicted clustering solution. Rand Index is defined as follows.

In the above equation, ‘known pairs’ is the count of object pairs that appear in the 
same clusters in CG, and CP and ‘strange pairs’ is the count of all the pairs that 
reside in different clusters in CG and CP. Adjusted Rand Index is obtained by scal-
ing Rand Index to {0 … 1}, so that it can be used for comparison.

Normalized Mutual Information (NMI)

Mutual Information or Normalized Mutual Information measures the agreement 
of clusters with ground truth labels with the predicted cluster solution, ignoring 
permutations.

V-measure

The V-measure is equivalent to normalized mutual information (NMI). V-measure 
is the harmonic mean of homogeneity and completeness. A homogeneous cluster-
ing solution is composed of pure clusters. Here, each cluster is pure——it consists 
of only objects of one class label. In a complete clustering solution, all the objects 
belonging to a specific cluster (as per ground truth) must be assigned to one clus-
ter. The V-measure can be expressed as:-

where: β is Given a Value of 2 by Default

8.4.4  Scree Plot

The methods mentioned above do not give an exact method to decide the num-
ber of clusters. Figure 8.7 shows a plot of the ratio of the mean squared intra-clus-
ter distances to the mean of squared inter-cluster distances. The ‘scree plot’ plot 
offers a simple method to guess the optimal cluster count. The knee of the scree 
plot gives us a good guess at the cluster count. The scree plot in Fig. 8.7 offers a 
3-cluster solution.

Rand Index = (known pairs+ strange pairs)/nC2

V−measure =
(1+ β)

β

homogeneity ∗ completeness

homogeneity+ completeness

8.4 Performance Evaluation



256 8 Cluster Analysis 

Fig. 8.7  Scree plot to 
determine the optimum 
number clusters

Tutorial 8.4.1 K-Means Clustering

Do Data Setup as in Tutorial 8.2.1 Data Setup and Visualization 
from sklearn.cluster import KMeans

k = 3; Three Cluster Solution 
cluster = KMeans(n_clusters=3, random_state=0).fit(X)
print(np.round((cluster.cluster_centers_),1))
[[5.9 2.7 4.4 1.4]
 [5.0 3.4 1.5 0.2]
 [6.8 3.1 5.7 2.1]]

Predict the cluster membership of each object
cluster.fit_predict(X) 

Let us inspect some of the parameters:-
cluster.get_params() # 'max_iter': 300, 'tol': 0.0001,

Distance of data points from the cluster centers
X2D  =  cluster.fit_transform(X)
print(np.round(X2D,2))
[[3.42 0.14 5.06]
 [3.4  0.45 5.11]
 [3.57 0.42 5.28]
..
 [1.18 4.41 0.65]
 [1.51 4.6  0.84]
 [0.83 4.08 1.18]]



257

Tutorial 8.4.2 Cluster Count by Silhouette and Calinski_harabasz scores

Objectives:
1. Plot silhouette_score and visually compare the clustering solutions
2. Plot calinski_harabasz_score and visually compare the clustering  
solutions

Do Data Setup as in Tutorial 8.2.1 Data Setup and Visualization 

from sklearn.cluster import KMeans
from scipy.spatial import distance
from sklearn import metrics # silhouette, calinski_harabasz
import matplotlib.pyplot as plt

The lower the score, the lower the better. Score for 2,3,4,5,6,7 clusters:
kstop = 8
sil      = [0] * (kstop-2)
cal      = [0] * (kstop-2)
for k in range(2,kstop,1):
    cluster  = KMeans(n_clusters=k, random_state=0).fit(X)
    sil[k-2] = metrics.silhouette_score(X, cluster.labels_,
metric='euclidean')
    cal[k-2] = metrics.calinski_harabasz_score(X, cluster.labels_)

Plot the Silhouette Score for 2,3,4,5,6,7 cluster solutions
sslabels = list(range(2,kstop,1)); sslabels
plt.plot(sslabels, sil)
plt.xticks(sslabels)
plt.grid()
plt.title ('silhouette_score by the number of clusters', fontsize=14)
plt.xlabel('number of clusters', fontsize=14)
plt.ylabel('silhouette_score', fontsize=14)

See Figure 8-4: K-Means Silhouette Score

Plot the Calinski Harabasz Score for 2,3,4,5,6,7 cluster solutions
sslabels = list(range(2,kstop,1)); sslabels
plt.plot(sslabels, cal)
plt.xticks(sslabels)
plt.grid()
plt.title ('sum of sqr: between cluster / within cluster', fontsize=14)
plt.xlabel('number of clusters', fontsize=14)
plt.ylabel('calinski_harabasz_score:ssb/ssw', fontsize=14)

See Figure 8-5: K-Means Calinski-Harabasz Score 

8.4 Performance Evaluation



258 8 Cluster Analysis 

Tutorial 8.4.3 Scree Plot to Determine the Cluster Count 

Objective: Generate Scree Plot to determine the optimum number clusters. 

Do Data Setup as in Tutorial 8.2.1 Data Setup and Visualization 

Define ssw
from sklearn.cluster import KMeans
def compute_ssw (X, centroids, predicted_class):
    ssw = 0
    for i in range(len(X)):
        xi = X.loc[i]
        xc = centroids[predicted_class[i]]
        ssw = ssw + distance.euclidean(xi,xc)**2
        return ssw

Define ssb
def compute_ssb (centroids):
    ssb = 0
    nclusters = len(centroids)
    for p in range(0,nclusters):
        for q in range(1, nclusters):
            if (p != q):
                ssb = ssb + 
    distance.euclidean(centroids[p],centroids[q])**2
return ssb

Compute ssw/ssb: -

Setup libraries and parameters
from sklearn.cluster import KMeans
from scipy.spatial import distance
import matplotlib.pyplot as plt
kstop    = 8  # to generate 7 clusters
ssratio  = [0] * (kstop-2) # 5 elements [0, 0, 0, 0, 0]

Evaluate 5 different cluster solutions, 2, 3, 4, 5, 6
for k in range(2,kstop,1): 
    cluster = KMeans(n_clusters=k, random_state=0).fit(X)

Predict the cluster membership of each object
    predicted_class = cluster.fit_predict(X)
    centroids = cluster.cluster_centers_
    ssw = compute_ssw (X, centroids, predicted_class)
    ssb = compute_ssb (centroids)
    ssratio[k-2] = ssw / ssb

sslabels = list(range(2,kstop))
sslabels # [2, 3, 4, 5, 6, 7]



259

plt.plot(sslabels, ssratio)
plt.xticks(sslabels)
plt.grid()
plt.title ('sum of sqaures ratio by the number of clusters', fontsize=14)
plt.xlabel('number of clusters', fontsize=14)
plt.ylabel('sum of squares ratio', fontsize=14)

See Figure 8-7: Scree Plot to Determine the Optimum number Clusters

Inference: -
See Figure 8-7: Scree Plot to Determine the Optimum number Clusters. The 
scree plot bends at X=3. (This is the knee of the scree plot). Therefore 3 
cluster solution is optimal 

Tutorial 8.4.4 When the labels known

Do Data Setup as in Tutorial 8.2.1 Data Setup and Visualization 

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import KMeans
from sklearn.metrics.cluster import fowlkes_mallows_score
from sklearn.metrics.cluster import rand_score
from sklearn.metrics.cluster import adjusted_mutual_info_score
from sklearn.metrics.cluster import v_measure_score

Compute Scores for 2 ... 9 clusters:

y = pdf.species
leg = ['fowl','rand', 'ami', 'vms']
kstop = 10
fowl  = [0] * (kstop-2)
rand  = [0] * (kstop-2)
ami   = [0] * (kstop-2)
vms   = [0] * (kstop-2)

The iris dataset consists of data labels - the ‘species’. Predict the cluster 
membership of each object (y_predicted) and check with the given labels for 
accuracy of the model.

for k in range(2,kstop,1):
    y_predicted = KMeans(n_clusters=k,random_state=0).fit(X).fit_predict(X)
    fowl[k-2] = fowlkes_mallows_score(y, y_predicted)
    rand[k-2] = rand_score(y, y_predicted)
    ami[k-2]  = adjusted_mutual_info_score(y, y_predicted)
    vms[k-2]  = v_measure_score(y, y_predicted)

8.4 Performance Evaluation



260 8 Cluster Analysis 

Plot Scores for 2 ... 9 clusters
sslabels = list(range(2,kstop,1))
plt.plot(sslabels, fowl,linestyle='solid')
plt.plot(sslabels, rand,linestyle='dashdot')
plt.plot(sslabels, ami, linestyle='dashed')
plt.plot(sslabels, vms, linestyle='dotted')
plt.xticks(sslabels)
plt.grid()
plt.title ('clustering scores when labels are known', fontsize=14)
plt.xlabel('number of clusters', fontsize=14)
plt.ylabel('score', fontsize=14)
plt.legend(leg, fontsize=14)

See Figure 8-6: Clustering Scores When Ground Truth is Known

8.5  Other Clustering Methods

In this chapter, we explored two popular cluster analysis methods——partition-
ing and hierarchical. There are many other methods in practice. We will have a 
cursory view of some of them (Han and Micheline Kamber, 2014).

8.5.1  The Choice of Algorithms

The underlying assumptions of the clustering algorithm and the data distribu-
tion influence the cluster shape. For example, the K-means algorithm assumes that 
clusters are spherical and equally sized, as it minimizes the squared Euclidean dis-
tance between points and cluster centroids. Hierarchical clustering builds a tree of 
clusters, and the shape of the clusters is not constrained. The DBSCAN algorithm 
identifies clusters based on the density of data points. It can find clusters of arbi-
trary shapes and is not sensitive to the assumption of spherical clusters.

When dealing with non-spherical clusters, an algorithm that aligns with the 
underlying structure of the data is crucial. Experimenting with different algorithms 
and validating their performance on your specific dataset is often necessary to find 
the most suitable approach. Let us conclude the chapter with an overview of other 
important clustering algorithms.

• Density-based clustering
• Grid-based clustering
• Probability Model-Based Clustering
• Clustering high dimensional data
• Clustering Large Datasets
• Clustering Graphs and Network Data.



261

8.5.2  Density-Based Clustering

Density-based clustering identifies clusters of arbitrary shapes in a dataset, 
assuming that a cluster in a data space is a contiguous region of high data-point 
density, separated from other clusters by contiguous regions of low data-point den-
sity. Cluster density is passed to the algorithm as a parameter. The data objects in 
the cluster separation regions may be considered noise or outliers. The algorithm 
works in one data scan. Examples of Density-based clustering algorithms are.-

• DBSCAN—Density-Based Spatial Clustering of Applications with Noise
• OPTICS—Ordering Points to Identify the Clustering Structure
• DENCLUE—Uses Statistical Probability Density Functions.

8.5.3  Grid Based Clustering

To understand the general principle underlying grid-based clustering, let us 
consider the example of the ‘STING’ method. STING is a multi-resolution clus-
tering technique based on a grid structure. The spatial area is initially divided into 
rectangular cells, organized into several levels with increasing resolution from top 
to bottom. At higher levels, each cell is further partitioned into numerous smaller 
cells at lower levels.

Before query processing, each cell's statistical information is computed and 
stored, facilitating efficient query responses. Parameters such as count, mean, 
standard deviation, min, max, and probability distribution type are pre-calculated 
for both high and low-level cells. The top-down approach of the grid allows for the 
straightforward computation of high-level cell parameters based on those of the 
lower-level cells.

Spatial data queries are addressed top-down, starting from a selected layer with 
a small cell count and progressively identifying relevant cells in lower layers to 
obtain detailed information. Notably, the method is well-suited for parallelization, 
enhancing computational efficiency.

8.5.4  Probability Model-Based Clustering

This method assumes that a cluster is a parameterized distribution. The given 
dataset is considered a data sample. Based on the dataset, we estimate the parame-
ters of the clusters.

8.5 Other Clustering Methods



262 8 Cluster Analysis 

8.5.5  Clustering High Dimensional Data

When the dimensionality (the number of features) is high, conventional dis-
tance measures can be dominated by noise. This necessitates specialized algo-
rithms for clustering high dimensional data. There are two major methods for 
this—(a) search for clusters existing in subspaces, where a subspace is a space 
woven by a subset of the attributes, e.g., Clique, Proclus, correlation-based clus-
tering, bi-clustering, etc. (b) dimensionality reduction, e.g., feature selection and 
summarization, principal component analysis method, etc.

8.5.6  Clustering Large Datasets

Clustering algorithms scale poorly in terms of computing time as the dataset 
size increases. BIRCH and CHAMELEON are advanced hierarchical clustering 
methods for large datasets.

BIRCH has a two-step process. In the first step, the dataset is scanned sequen-
tially. The data points are added one after the other to a structure similar to the 
B + tree. An incoming data point is added to the closest leaf entry. The intermedi-
ary nodes contain pointers to leave nodes and cluster features such as the number 
of data points, the sum of data points, and the sum of the squares of data points 
(the zeroth, first and second moments). With the addition of new data points, 
cluster features are updated. Two parameters are in the tree construction——the 
maximum number of children per non-leaf node and the maximum diameter of 
sub-clusters at the leaf nodes. These parameters determine the merge/split of 
nodes. In the second step, an appropriate clustering algorithm is used to cluster 
the leaf nodes of the CF tree, removing the sparse clusters and grouping dense 
clusters into larger ones. BIRCH algorithm is fast O(n). However, it is sensitive 
to the order of insertion of data points, as is the case with B + trees. If the data is 
unordered, building the tree takes longer. Since the size of the leaf nodes is fixed 
as a parameter, the emerging clusters may not be natural. Since cluster diameter is 
another parameter used, the emerging clusters tend to be spherical.

CHAMELEON is a hierarchical clustering algorithm designed to effectively 
group data into clusters by incorporating dynamic modeling. First, small sub-clus-
ters are created. Then, they are combined into larger clusters iteratively. The merg-
ing decisions are based on evaluating inter-cluster relationships and within-cluster 
cohesion, promoting the formation of meaningful and well-balanced clusters. The 
steps are elaborated below.

The objects are initially divided into many small sub-clusters using a 
graph-partitioning algorithm. This step creates a set of initial clusters, each rep-
resenting a subset of similar objects. The algorithm then agglomerates these small 
sub-clusters to form larger clusters iteratively.



263

Fig. 8.8  Social network clusters

The decision to merge two clusters is based on careful consideration of inter-
connectivity and proximity measures. Two clusters are merged if the intercon-
nectivity (relationships between data points in different clusters) and closeness 
(proximity of data points within a cluster) between the clusters are notably higher 
than the within-cluster measures (relationships and proximity within each cluster). 
This criterion ensures that the merging process maintains a balance——clusters 
are combined when the connections between them are significant, indicating a 
meaningful similarity while also considering the closeness of data points within 
each cluster.

8.5.7  Clustering Graphs and Network Data

Data represented as graphs and networks have become quite common today, 
especially in online social networks, the World Wide Web (WWW), and digital 
libraries. These networks can represent connections between various entities, such 
as people in a social network or web pages.

Traditional clustering focuses on grouping similar items based on their attrib-
utes. In the context of network data, clustering and community detection are pri-
marily concerned with grouping entities based on their connections within the 
network. Let us see some examples. In community detection, the entities are 
grouped based on their connections within the network. Citation networks are 
clustered based on relationships between research papers and citations. In social 
network analysis, individuals are based on their connections (friendship, commu-
nication, etc.). So, network-graph-based similarity and clustering methods necessi-
tate very different clustering methods. See Fig. 8.8. Clustering network graphs are 
discussed further in the chapter on ‘Computational Techniques’.

8.5 Other Clustering Methods



264 8 Cluster Analysis 

Data Stream Clustering 
Methods

Hierarchical

BIRCH

E Stream

HUE Stream

ClusTree

Par��oning

CluStream

Stream KM+

StrAP

HP Stream

SW Clustering

Density Based

DenStream

SOStream

SVStream

OPTICS-
Stream

PreDeCon 
Stream

Grid Based

D-Stream

GNG based

Growing 
Neural Gas 

(GNG)

Grow When 
Required 

(GWR)

Incremental 
GNG (IGNG)

G-Stream

Fig. 8.9  Clustering streams

Data Analytics in Action 

State-of-the-art clustering data streams. Big Data Analytics (Ghesmoune 
et al., 2016).
 Data stream clustering applications are deployed in numerous spheres, 
including network intrusion detection, transaction streams, phone records, 
web click-streams, social streams, weather monitoring, etc. In data streams, 
we assume that the data is voluminous and arrives so rapidly that storing 
it in a conventional database for processing later is not feasible. Therefore, 
if not processed in real-time, the data is lost. Extending our imagination, 
we assume we can make only a small number of passes on the data to gen-
erate clusters. Here, both the CPU time and memory pose challenges. The 
paper attempts a comprehensive survey of the algorithms for clustering over 
data streams. This is diagrammatically shown in Fig. 8.9. The paper dis-
cusses popular open-source streaming platforms such as Spark Streaming, 
Flink, MOA, and SAMOA. The paper also describes open challenges in data 
stream clustering——data privacy, data variety, data veracity, data summa-
rization/data sampling, distributed streams, autonomous and self-diagnosis, 
and combining offline and online models.



265

Summary

Cluster analysis is a class of techniques used to group objects or cases into rela-
tively homogeneous groups called clusters. Objects in each cluster tend to be sim-
ilar and dissimilar to objects in other clusters. Similarities are computed in terms 
of proximity between the feature values. The proximity measures used for cluster-
ing can be varied——euclidean for numeric data, Jaccard distance for similarity 
of documents, edit distance to compare strings, hamming distance for error cor-
rection in data communication, etc. Density-based clustering and clustering of net-
work graphs need different measures.

There are many challenges in cluster analysis. For high volume/high dimen-
sional data, we need scalable clustering algorithms. The distance measures can be 
varied. Common clustering algorithms tend to cluster in hypersphere; however, 
clusters come in irregular shapes. Real-world datasets contain outliers, missing, 
or noisy data. We need a comprehensive set of relevant features with a well-
founded theoretical basis. The clustering results must be interpretable and usable 
in practice.

In hierarchical clustering, objects are grouped into a tree of clusters. 
Agglomerative hierarchical clustering employs a bottom-up approach, progres-
sively combining individual objects into clusters. On the other hand, divisive clus-
tering starts with the entire dataset. It iteratively divides it into multiple groups 
until each object is in a separate cluster or termination conditions are met. A 
dendrogram, a tree structure, visually represents the hierarchical clustering pro-
cess, illustrating how objects are grouped step by step. Although the dendrogram 
provides insights into cluster division, it lacks information about the spatial dis-
tribution of clusters or the optimal number of clusters. Agglomeration clustering 
employs various methods such as the centroid, linkage, and variance. Variance 
methods aim to create clusters that minimize within-cluster variance.

The distance measures used in k-means clustering include sequential threshold, 
parallel threshold, and optimizing partitioning. There are various methods for par-
titioning, such as k-means, k-medoids, and clarans. In the k-means algorithm, the 
cluster center is computed as the arithmetic mean of the coordinates of all objects 
in a cluster. It is, therefore, sensitive to outliers. An almost centrally located actual 
object may be considered instead. Such a point is called medoid, and the method 
is called the k-medoids method. With large datasets and numerous features, we 
may use data samples rather than the entire dataset. CLARANS (Clustering Large 
Applications based upon RANdomized Search) is a trade-off between the cost and 
the effectiveness of using samples.

There are several measures for determining the performance of cluster analy-
sis. This includes the silhouette coefficient, Calinski-Harabasz index, etc. If the 
ground truth is known, measures such as Fowlkes-mallow's index; normalized 
mutual information (NMI), adjusted mutual information (AMI), V-measure, etc. 

Summary



266 8 Cluster Analysis 

may be used. A scree plot can be used to determine the effective number of clus-
ters, which works on the ratio of intra-cluster to inter-cluster variance.

This chapter explored two popular cluster analysis methods——partitioning 
and hierarchical methods. There are many other methods in practice, such as den-
sity-based clustering, grid-based clustering, probability model-based clustering, 
high dimensional data, large datasets, clustering graphs, and network data.

Questions

Comprehension

1. Define Cluster Analysis
2. Write a note on the applications of Cluster Analysis
3. How do you tackle the problem of outliers in cluster analysis?
4. What is the rationale behind the CLARANS method?
5. Discuss the challenges in clustering high dimensional data. Suggest clustering 

methods to tackle them.

Write brief notes on 

6. Hierarchical Methods
7. Partitioning Methods
8. Dendrogram
9. Fowlkes-Mallow’s score
10. Density-based Methods
11. Probability-model-based clustering.
12. Grid-based clustering
13. Clustering graphs and network data
14. BIRCH algorithm for clustering large datasets
15. What are the challenges in cluster analysis?
16. How to determine the cluster proximity (the distance measures) in hierarchi-

cal and k-means clustering
17. How do we determine the optimal number of clusters?
18. Describe the k-means clustering algorithm with an example.
19. Describe the various performance measures used in cluster analysis.

Analysis

 20. Compare and Contrast Cluster Analysis with Classification
 21. How does the cosine distance measure work, and in what scenarios is it 

beneficial?
 22. When would you use the Jaccard distance, and what types of data does it 

apply to?



267

 23. Can you explain the difference between L1 and L2 distance norms and how 
they are applied in clustering?

 24. Can you explain how domain knowledge is critical in addressing challenges 
like determining the right number of clusters and selecting relevant features 
for clustering?

 25. What are the advantages of the k-medoid method over the traditional k-means 
approach, particularly in handling data with outliers and noise?

 26. How does the CLARANS method balance cost and effectiveness when deal-
ing with large datasets, and what are the trade-offs associated with using data 
samples?

 27. What role does the dendrogram play in hierarchical clustering, and why is it 
often used in conjunction with k-means clustering for a more comprehensive 
understanding of the data's structure?

 28. How do the challenges of cluster analysis in high dimensional data differ from 
those in low-dimensional data, and what advanced techniques can be applied 
to address these challenges?

 29. What criteria can be considered when selecting the ‘right’ number of clusters, 
and how do hierarchical clustering and nonhierarchical methods contribute to 
this decision?

 30. In your experience, how do outliers and noisy data impact the choice of clus-
tering algorithms and the quality of clustering results, and can you provide 
strategies to handle these issues effectively?

 31. What is the significance of the confusion matrix in evaluating cluster analysis 
results when the ground truth is known? How can precision, recall, accuracy, 
F1 Score, and the Fowlkes-Mallow's Index be derived from this matrix?

 32. In the context of clustering, what is the Rand Index, and how does it measure 
the similarity of clusters with known ground truth labels? Can you explain the 
concept of ‘known pairs’ and ‘strange pairs’ in the Rand Index calculation?

 33. What is a ‘scree plot,’ and how can it help determine the optimal number of 
clusters in cluster analysis? Are there specific guidelines for interpreting scree 
plots effectively?

 34. Explain the importance of feature selection in cluster analysis. How can irrel-
evant features affect the quality of clustering solutions, and what strategies 
can be employed to address this issue?

 35. Compare density-based clustering methods (e.g., DBSCAN) with grid-based 
clustering methods (e.g., STING). What are the key differences in their 
approaches, and in what situations would you choose one over the other for a 
clustering task?

 36. BIRCH and CHAMELEON are hierarchical clustering methods designed 
for large datasets. Explain the fundamental differences between these two 
approaches and how they handle clustering in large-scale scenarios. What are 
the trade-offs associated with each method?

 37. How does the choice of clustering algorithm impact the identification of clus-
ters in a dataset? Specifically, how does the k-means algorithm influence clus-
ter shapes, and how do K-means and DBSCAN handle different cluster shapes?

Questions



268 8 Cluster Analysis 

 38. Clustering graphs and network data is distinct from traditional attrib-
ute-based clustering. Discuss the primary differences and challenges in clus-
tering graph-based data. Share an example of a situation where network graph 
clustering led to meaningful insights or applications.

Application

39. Write a brief note on Euclidean Distance in k dimensions. Find the 
Manhattan, Euclidean, and cosine distance between the two points [1, 6, 9] 
and [2, 4, 8]

40. How can cluster analysis be applied in business, and what are some specific 
use cases for customer segmentation?

41. How does cluster analysis help suggest products or content to users in recom-
mendation systems? Can you give an illustration of this process?

42. How is cluster analysis applied in information retrieval, and what benefits 
does it offer in terms of organizing and retrieving information?

43. How can density-based clustering algorithms like DBSCAN be applied in 
practice? Provide an example of a real-world scenario where density-based 
clustering is valuable and explain the benefits of using such an approach.

Exercises

The questions in this section are based on the penguins dataset accessible from the 
Seaborn Library. Select all the male penguins. Develop different clustering solu-
tions based on all the numeric features.

Penguins Dataset Preprocessing

import seaborn as sb
d = sb.load_dataset('penguins')
d = d.dropna()
dmales = d[d.sex=='Male'] 
X = dmales[['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 
            'body_mass_g']]
y = ground truth on species

Exercise 8.1 Dendrogram

Draw a Dendrogram. Compare clustering solutions with 2–10 clusters.

Exercise 8.2 k-Means

Do K-means clustering, giving 2–10 cluster solutions. Compare the various per-
formance scores (silhouette, calinski_harabasz) without ground truth.



269

Exercise 8.3 Ratio of Ssw/SSB; Scree Plot; Optimal Count of Clusters

Do a K-means scree plot for giving 2–10 cluster solutions. Determine the optimal 
number of clusters based on the exercises. Explain your rationale.

Exercise 8.4 Compare Performance Scores with Ground Truth

Do K-means clustering giving 2 to 10 cluster solutions. Compare the various per-
formance scores with ground truth.

References

Ghesmoune M, Lebbah M, Azzag H (2016) State-of-the-art on clustering data streams. Big Data 
Analytics, 1(1). https://doi.org/10.1186/s41044-016-0011-3

Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intelligent 
Inform Syst 17(2–3). https://doi.org/10.1023/A:1012801612483

Han J, Micheline Kamber JP (2014) Data mining. concepts and techniques, 3rd edn (The Morgan 
Kaufmann Series in Data Management Systems). In: Proceedings—2013 international con-
ference on machine intelligence research and advancement, ICMIRA 2013

Malhotra NK (2020) Marketing research an applied Prientation, 7th Edn. Pearson Education

References

http://dx.doi.org/10.1186/s41044-016-0011-3
http://dx.doi.org/10.1023/A:1012801612483


271

Learning Objectives

• Gain an understanding of the basic concepts of survival analysis.
• Discuss and demonstrate Kaplan–Meier survival estimation.
• Discuss and demonstrate the Log Rank Test for comparison of groups.
• Discuss and demonstrate the Cox Proportional Hazards Survival Model.
• Demonstrate Grid Search Technique for Building a Parsimonious Model.
• Demonstrate Random Forest Survival Analysis Model for Survival Analysis.
• Illustrate key performance metrics for evaluating survival models.

Overview

This chapter introduces the concepts and techniques of survival analysis. We 
also investigate a case study on the survival analysis of subjects with breast cancer, 
using the various techniques introduced in this Chapter.

The chapter begins by delving into censored data and survival models. 
Subsequently, it explores survival estimation through the Kaplan–Meier method 
and group comparisons using the log-rank test. The chapter then extensively 
examines multivariate survival analysis, focusing on the Cox proportional hazards 
survival model. Afterward, it covers the grid search method for constructing a con-
cise survival model, transitioning to exploring the random forest survival analysis 
model. Lastly, the chapter investigates the range of performance metrics employed 
in survival analysis.

Chapter 9
Survival Analysis

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_9

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_9.

https://doi.org/10.1007/978-981-99-0353-5_9#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_9&domain=pdf


272 9 Survival Analysis

The chapter commences with a discussion on censored data and survival mod-
els. Subsequently, it explores the Kaplan–Meier method for survival estimation 
and the log-rank test for comparing groups. A detailed discussion of multivari-
ate survival analysis using the Cox proportional hazards survival model ensues. 
Afterward, it covers the grid search technique for building a parsimonious survival 
model and explores the random forest survival analysis model. Lastly, the chapter 
investigates the various performance metrics used in survival analysis.

Definitions

AUC: AUC and concordance index are common performance metrics used in sur-
vival analysis. AUC is the area under the receiver operating characteristic (ROC) 
curve. The AUC value is expected to be between 0.5 (random prediction) and 1 
(perfect prediction). Also, see ROC.
Brier score: The Brier score is used to evaluate the accuracy of a survival pre-
diction at a given time t. It represents the mean value of the squared distances 
between the observed survival status and the estimated survival probability. It 
takes a value between 0 (best) and 1 (worst).
Censored Data. In survival analysis, an individual may not experience the event 
during follow-up, or we may lose contact with him/her, or he/she may withdraw 
from the study. Despite follow-up, we may still need to determine the exact sur-
vival time. This leads to the incompleteness of data, called censoring. Data is 
called right-censored when we are unaware of the exact time of occurrence of the 
event under study. Similarly, data is left censored when we do not know the exact 
start time. Data is interval-sensitive, or interval-censored when we have a time 
interval, rather than the exact time of an event.
Concordance index: The concordance index is the proportion of observations the 
model can order correctly in terms of survival time, i.e., concordant pairs divided 
by the total number of possible evaluation pairs. The concordance index is a gen-
eralization of AUC, which is useful in classification based on a single event to 
accommodate censored data.
Concordant pairs: Please see the definition with an example under the section on 
concordance index.
Cox proportional hazards model: Numerous features influence the likely course of 
a medical condition—e.g., Age, Gender, Genomics, months since occurrence/diag-
nosis, prior therapy, and current treatment. The Cox proportional hazards model is 
a multivariate regression analysis model used for studying the effects of multiple 
numeric predictors, and covariates on survival.
Kaplan–Meier survival estimate: Kaplan–Meier survival estimate is a simple sur-
vival probability estimate computed from “survival time” data.
Log-rank test: The log-rank test can be used to compare the survival probability 
distribution across stratified covariates.



2739.1 Introduction and Overview

Parsimonious model: A parsimonious model has a minimum number of parame-
ters that offer good explanatory power. To build a parsimonious model, we need to 
identify the vital features.
Random Forest Survival Analysis: A Random Forest is a collection of decision 
trees with a single and aggregated result. Multiple trees in the random forest 
reduce the chances of overfitting. Random Forest Survival Analysis (RSF) is used 
for risk prediction of right-censored outcomes. RSF uses multiple split criteria and 
methods to form an ensemble of survival trees.
ROC: ROC (receiver operating characteristic curve) is a probability distribution 
obtained by plotting the True Positive Rate (y-axis) against the False Positive Rate 
(x-axis) depicting the performance of a classifier at all classification thresholds. 
Also, see AUC.
Survival analysis: Survival analysis is a statistical study of time and events. The 
event of interest may be death, recovery, or any specific experience of interest. 
Time is the duration from the beginning of the follow-up of an individual until an 
event occurs. We may not know the exact survival time (censored data), posing a 
challenge to the analysis.
Survivor function: The survivor function, also called the survival function or relia-
bility function, gives the probability that a person survives longer than some spec-
ified time.

9.1  Introduction and Overview

Survival analysis is a statistical study of time and events. The event of interest 
may be death, recovery, or any specific experience of interest. Let us take a med-
ical study. Time is the duration from the beginning of the follow-up of an indi-
vidual until an event occurs. Numerous features influence the likely course of a 
medical condition—e.g., Age, Gender, Grade, Genomics (a comprehensive set of 
genetic information), months since occurrence/diagnosis, prior therapy, current 
treatment, etc. An individual may not experience the event during follow-up, or we 
may lose contact with him/her, or he/she may withdraw from the study. Despite 
follow-up, we may not know the exact survival time. These are the premises under 
which a survival analysis study is undertaken (David and Mitchel 2012).

9.1.1  What is Censored Data?

Consider a hypothetical example—a study of cancer subjects over twelve 
weeks, depicted in Fig. 9.1.

The x-axis shows the time in weeks. The horizontal lines represent the subjects 
who volunteered for the study. The subjects joined the study at different times 
during this period. We can track a subject who has consented to the study during 



274 9 Survival Analysis

Fig. 9.1  A survival study

the study period. At the end of the study over 12 weeks, we know that A and F 
have met with the event under study. Their survival period is known (A—5 weeks, 
F—4 weeks) However, the survival periods of others (B, C, D, E) are not known.

In some cases, we may end up with only partial information about survival 
time. This problem is called censoring. Censoring occurs when we have some 
information about individual survival time, but we do not know the exact survival 
time (David and Mitchel 2012). Let us look at the cases shown in Fig. 9.1.

1. A and F have met with the event (e.g., death). We know their survival time 
(A—5 weeks, F—4 weeks)

2. C withdrew from the study, and we lost contact with E. This implies that C and 
E have become unavailable for follow-up.

3. B and D did not encounter the event throughout the study. We do not know 
what happens to them after the period of study.

4. B, C, D, and E are called right-censored data.

Note that data can also be left-censored. For example, let us say that a subject 
tests positive for a particular disease. However, we are unaware of the exact time 
when the subject contracted the disease, so we miss out on a time period before 
our reckoning. Such data is called left censored. Let us consider another variation 
when two tests were administered. The first one proved negative, and the second 
proved positive. In this case, we have a time interval within which the subject con-
tracted the disease. Such data are called interval-sensitive data.

In our tutorials, we deal with only the right censored data. Primarily our data 
will consist of a set of observations (X, Y). X is a set of features that influence the 



275

Table 9.1  Veterans lungs cancer survival data

X: 6 Features (DataFrame) Y: survival data
(structured array)

Age_yrs Celltype Prior_therapy Treatment
69.0  squamous  ...          no   standard
64.0  squamous  ...            yes   standard
38.0  squamous  ...             no   standard
...       ...  ...            ...        ...
67.0     large  ...            yes       test
65.0     large  ...             no       test
37.0     large  ...             no       test

(Status, Survival-days)
( True,     72.)
( True,    411.)
( True,    228.)

( True,    231.)
( False,   182.)
( True,     49.)

Fig. 9.2  Kaplan–Meier survival probability—veterans lung cancer

9.1 Introduction and Overview

prognosis—e.g., Age, Gender, Grade, Genomics; and Y is a tuple (Died—True/
False, Survival Period). For example, see Table 9.1, and Fig. 9.2.

9.1.2  The Goals of Survival Analysis

The primary goals of survival analysis are:-

1. To estimate and interpret survivor and/or hazard functions from survival data.
2. To assess the relationship of explanatory variables to survival time.
3. To build survival models.

Survivor Function

The survivor function S(t), also called the survival function or reliability function, gives 
the probability that a person survives longer than some specified time t. See Fig. 9.2a.

S(t) = P(T > t)



276 9 Survival Analysis

Assume that ‘t’ is a continuous variable and f(t) the probability that an event 
occurs at time t. The cumulative distribution function F(t) gives the probability 
that the event has occurred by duration t.

Hazard Function

The hazard function h(t) gives the instantaneous potential per unit time for the 
event to occur, given that the individual has survived up to time ‘t’ (David and 
Mitchel 2012).

Here the numerator is the conditional probability that the event will occur in 
the interval [t, t + dt], given that it has not occurred before. The denominator is the 
width of the interval ‘dt’. The hazard function is also known as conditional failure 
rate, conditional mortality rate, or instantaneous failure rate. It provides the proba-
bility of occurrence of an event.

The cumulative hazard function is computed as follows:-

The relationship between survival function and hazard function can be expressed as:-

Survival Analysis Models

The Kaplan–Meier estimator is a non-parametric method used to estimate the 
survival function from observed data. It is employed to visualize and analyze the 
cumulative survival probability over time, offering insights into how the probabil-
ity of survival changes throughout the study period.

F(t) = P{T ≤ t}

S(t) = P(T > t)

= 1− F(t)

=

∞̂

t

f (x)dx

h(t) = lim
dt→0

(

P

(

t ≤ T < t +
dt

T
≥ t

))/

dt

H(t) =

t
ˆ

0

h(u)du

S(t) = exp



−

t
ˆ

0

h(u)du







2779.1 Introduction and Overview

The log-rank test is a non-parametric test used to compare the survival curves 
of two or more groups. It helps determine whether there are significant differ-
ences in survival probabilities among different groups, making it a valuable tool 
for assessing the efficacy of different treatments or interventions. For example, to 
compare the survival probability of subjects undergoing ‘standard treatment’ and 
subjects undergoing ‘test treatment’—see Fig. 9.2b.

The Cox proportional hazards regression model is a semi-parametric method 
used to assess multiple covariates’ impact on survival. It allows the simultaneous 
examination of numeric predictors and known covariates, providing hazard ratios 
to quantify the change in hazard with variations in predictors. For example, when 
researchers want to assess the impact of numeric predictors (e.g., blood pressure) 
and known covariates (e.g., age, gender, cancer grade) on survival simultaneously, 
the Cox proportional hazards regression model is commonly employed. It provides 
hazard ratios, indicating how the hazard (risk of an event) changes with a one-unit 
change in the predictor.

The RSF is an ensemble learning method that combines multiple decision trees 
to provide a comprehensive and aggregated prediction. It is beneficial when deal-
ing with datasets with both numeric and categorical predictors. RSF is versatile 
and capable of incorporating classification and regression models into the survival 
analysis framework.

Artificial neural network models, such as Cox-NNET, have found applications 
in biomedical fields, especially in tasks like imaging analysis and patient prog-
nosis prediction. Cox-NNET is specifically designed to predict patient prognosis 
using high-throughput transcriptomics data. It has demonstrated comparable or 
superior performance over traditional methods like the Cox-proportional hazards 
regression method and the Random Forest survival method. The source code is 
available on GitHub (Ching et al. 2018).

9.1.3  A Survival Analysis Case Study

Survival analysis software package installation is a simple one-step process. 
Check (Sundararajan 2023) for instructions for package installation, if necessary. 
In addition, the software package ELI5 is used in the random forest Tutorial—
check the URL mentioned above for installation instructions.

A survival analysis study was conducted on breast cancer patients to predict 
distant metastases (dm). Distant metastasis refers to cancer that has spread from 
the primary organ to distant organs/lymph nodes. The sampling frame was breast 
cancer patients, who have reported lymph node-negative (N-) condition. The sam-
pling size was 198 cases. The measurements included 76 gene signatures (prog-
nostic) and four additional parameters: age, estrogen receptor, grade, and size. For 
more details, see Sect. 1.6. In this study, the endpoint was the presence of distance 
metastases, which occurred for 51 patients (25.8%). We will use the above dataset 
for all the tutorials in this chapter.

http://dx.doi.org/10.1007/978-981-99-0353-5_1


278 9 Survival Analysis

Table 9.2  Breast cancer metastases survival—data sample

X: 76 gene features + 4 other Features (DataFrame) Y: survival data 
(days to metastases)

X200726_at  X200965_s_at  ...                  grade  size
10.926361      8.962608  ...  poorly differentiated   3.0

...
11.939616      9.615587  ...    well differentiated   2.5
11.848449     10.528911  ...           intermediate   1.2
11.425778      9.901486  ...  poorly differentiated   2.5

(e.tdm, t.tdm)
( True,  723.)

(False, 2225.)
(False, 2722.)
(False, 1781.)

9.2  Kaplan–Meier Survival Estimate

A simple survival probability estimate can be computed from ‘survival time’ 
data, considering subjects with known survival times, such as individuals who died 
within the study period, as illustrated in the ‘Breast Cancer Metastases Survival 
Data’ in Table 9.2. The column “Y: survival data (days to metastases)” is in the 
form of a set of tuples (e.tdm, t.tdm), where each tuple represents one subject. Let 
us focus on all the subjects with status (e.tdm) = True.

A simple survival estimate beyond time t, Ŝ(t), is arrived below.
Let S(t) = P(T > t)

 = number of patients surviving beyond (t)/total number of patients.
Kaplan–Meier survival estimate can be used to compute and plot the observed 

survival probability. The general formula for Kaplan–Meier survival probability at 
failure time tf is shown below (David and Mitchel 2012).

Here, P̂
(

T > tf
∣

∣T ≥ tf
)

 is the conditional probability of surviving past time tf 
and Ŝ

(

tf−1

)

 represents the product of all conditional survival probabilities, through 
the previous f–1 failures. This can be expressed as,

Tutorial 9.1    BC Case - Kaplan-Meier Survival Estimate   

Model Kaplan-Meier survival estimate of breast cancer patients to predict 
distant metastases (dm). We can install the scikit-survival package and re-
solve package installation issues, if any, using the following command 
!pip install scikit-survival Refer: {(Sundararajan, 2023)}

Ŝ
(

tf
)

= Ŝ
(

tf−1

)

P̂
(

T > tf
∣

∣T ≥ tf
)

Ŝ
(

tf−1

)

=

f−1
∏

i=1

P̂(T > ti|T ≥ ti )



279

Fig. 9.3  Kaplan Meier 
survival probability of breast 
cancer patients

9.2 Kaplan–Meier Survival Estimate

Tutorial 9.1.1 Install Package / Resolve Problems / Setup Data

!pip install scikit-survival
import matplotlib.pyplot as plt

Load survival analysis libraries
from sksurv.datasets import load_breast_cancer
from sksurv.nonparametric import kaplan_meier_estimator

Load Breast Cancer Data
X, Y = load_breast_cancer()

X is a set of 80 features, and Y is survival time

Y.dtype   # [('e.tdm', '?'), ('t.tdm', '<f8')]
e.tdm: Boolean; True:  indicates that metastasis has occurred
t.tdm: time to distant metastasis in days (See the data description) 

Tutorial 9.1.2 Build KM model; Plot KM Model

Compute the survival time and the associated probability
time, prob = kaplan_meier_estimator(Y['e.tdm'], Y['t.tdm'])

plt.rcParams['font.size'] = '14'
plt.plot(time, prob)
plt.title ('Kaplan-Meier Survival Probability ')
plt.ylabel('Probability of Survival S(t) ->')
plt.xlabel('Time in Days')

See Figure 9-3: Kaplan Meier Survival Probability… 

Tutorial 9.1.3 Compare Survival Under Different 'er' Types

er is estrogen-receptor: category labels (positive, negative)
X['er'].value_counts() # positive cases: 134; negative cases: 64

Plot the estimate for er positive cases first
Filter = (X['er'] =='positive')
time, prob = kaplan_meier_estimator(Y['e.tdm'][Filter], 
Y['t.tdm'][Filter])



280 9 Survival Analysis

Fig. 9.4  KM survival probability by categories (ER type and Grade)

plt.plot(time, prob)
Plot the estimate for er negative cases 
Filter = (X['er'] =='negative')
time, prob = kaplan_meier_estimator(Y['e.tdm'][Filter], 
Y['t.tdm'][Filter])
plt.plot(time, prob)

plt.rcParams['font.size'] = '16'
leg = ['estrogen receptor positive','estrogen receptor negative']
plt.legend(leg, loc='best')
plt.title ('KM Survival Prob. by estrogen receptor type', fontsize=16)
plt.ylabel('Probability of Survival')
plt.xlabel('Time in Days')

See Figure 9-4: KM Survival Probability by Categories

Tutorial 9.1.4 Compare Survival Under Different 'grades'

X['grade'].value_counts() 
Counts: intermediate: 83, poorly differentiated: 83, well differentiated: 
30, unknown: 2

ls=['solid','dashed','dashdot','dotted']
i=0
for grade_type in X['grade'].unique():
    grade_filter = (X['grade'] == grade_type)
    time, prob = kaplan_meier_estimator(Y['e.tdm'][grade_filter],
                 Y['t.tdm'][grade_filter])
    plt.step(time, prob, where='post',linestyle=ls[i],
             label='%s (n = %d)' % (grade_type, grade_filter.sum()))
    i+=1
plt.rcParams['font.size'] = '16'
plt.legend(loc='best')
plt.title ('KM Survival Probability by Grade',fontsize=16)
plt.ylabel('Probability of survival S(t) ->')
plt.xlabel('Time in Days                 ->')

See Figure 9-4 (b): KM Survival Probability by Categories



281

Fig. 9.5  Stratification of sample data

9.3 Log-Rank Test and Cox Proportional Hazards Model

9.3  Log-Rank Test and Cox Proportional Hazards Model

In this section, we take a look at the log-rank test for comparison of two or 
more independent groups (e.g., subjects with cancer grade = I, grade = II, or 
grade = III). This is followed by a detailed discussion of multivariate survival anal-
ysis using the Cox proportional hazards survival model.

9.3.1  The Log-Rank Test for Comparing Groups

Figure 9.5 depicts the stratification of the categorical variables in our case 
study. The ER estrogen-receptor feature can be classified into two categories: 
ER-positive and ER-negative. Similarly, the grade of cancer can be classified into 
three classes—intermediate, poorly differentiated, and well-differentiated.

Several tests are available to compare survival among independent groups, 
with the log-rank test being a particularly popular choice. This test is employed 
to compare the distribution of survival probabilities across different groups of par-
ticipants. For instance, we might want to compare groups stratified by one of the 
covariates depicted in Fig. 9.5. Another scenario could be in a clinical trial with a 
survival outcome, where the goal is to compare the survival times of participants 
receiving a new drug to those receiving standard therapy.

Figure 9.2b illustrates that survival curves are estimated for each group sepa-
rately using the Kaplan–Meier method and then compared using the log-rank test. 
A commonly used approach to compute the log-rank test is closely related to the 
chi-square test statistic (χ2). This method compares the observed to expected num-
bers of events at each time point over the follow-up period. While the detailed der-
ivations are not provided here (David and Mitchel 2012), the null hypothesis and 
the formulae are summarized below.



282 9 Survival Analysis

Null hypothesis (H0): There is no difference in survival between two or more 
independent groups.

Here, 
∑

O   is the observed number of events, over time t
∑

E   is the Expected Number of Events, Over Time t

9.3.2  Cox Proportional Hazards Survival Model

The accuracy of survival estimates improves when we consider the influence of 
categorical covariates such as Age, Gender, Grade, Genomics, and numeric predic-
tors such as blood pressure. The Cox proportional hazards model or Cox regres-
sion model is a multivariate parametric model that provides a way to estimate 
survival in the presence of multiple numeric predictors and covariates.

The model evaluates the influence of several features (X1 … Xk) on surviving a 
hazard. It allows us to examine how the features influence the rate of a particular 
event happening (e.g., death) at a particular point in time. This rate is commonly 
referred to as the hazard rate. The Cox PH model formula can be expressed as 
(David and Mitchel 2012):-

where:

• t represents the survival time,
• h(t) is the hazard function determined by a set of k features (X1, X2, … Xk)
• coefficients (B1, B2, …, Bk) measure the influence of the features.
• h0 is called the baseline hazard. It corresponds to the hazard rate if the influ-

ence of the co-variates Xi is set to zero

The exponent B1X1 + B2X2 + · · · + BkXk is a linear regression in k features.
The exponential quantities exp (Bi) are called hazard ratios (HR). A value 

of Bi > 0 implies exp(Bi) > 1, which in turn means HR > 1. The following rules 
ensure.

• HR = 1 implies no effect on hazard h(t)
• HR > 1 implies an increase in hazard h(t)
• HR < 1 implies a decrease in hazard h(t)

χ2 =
∑

(
∑

O−
∑

E
)2

∑

E

h(t) = h0(t) ∗ exp (B1X1 + B2X2 + · · · + BkXk)



2839.3 Log-Rank Test and Cox Proportional Hazards Model

Tutorial 9.3    BC Case - Cox Proportional Hazards Model   

Consider our case study of breast cancer patients to predict distant metas-
tases (dm). Do the following: - 
1. Model the survival time estimate, considering the influence of the covari-
ates.
2. Compute the log hazard ratios (HR), and interpret them
3. Compute the bi-variate influence of covariates with survival time and in-
terpret them 

Tutorial 9.3.1 BC Case – Data Setup   

!pip install scikit-survival
import pandas as pd
import numpy as np

Load survival analysis libraries
from sksurv.linear_model import CoxPHSurvivalAnalysis
from sksurv.preprocessing import OneHotEncoder
from sksurv.datasets import load_breast_cancer

Load breast cancer data
X, Y = load_breast_cancer()

'er' and 'grade' are categories. Transform them using OHE to numeric. See 
Table 9-3: One-Hot Encoding of the variable ‘grade’

Xn = OneHotEncoder().fit_transform(X)

Tutorial 9.3.2 BC Case – Fit Cox PH Survival Model   

estimator = CoxPHSurvivalAnalysis()
estimator.fit(Xn, Y)
Check Model Score
estimator.score(Xn, Y) # 0.950

Tutorial 9.3.3 Log Hazard Ratios

B = pd.DataFrame() 
B['variable'] = Xn.columns
B['log_hazard_ratio'] = estimator.coef_ # Coefficients
print(B)
                       variable  log_hazard_ratio     Interpretation
0                    X200726_at         -4.034343     decreases the HR
1                  X200965_s_at          0.702673     decreases the HR
...                         ...               ...
77                  er=positive         -2.429159     decreases the HR
78           grade=intermediate          4.932327     increases the HR
79  grade=poorly differentiated          3.362598     increases the HR
80                 grade=unkown        -16.889889     not interpreted
81                         size          0.804356     not interpreted
[82 rows x 2 columns]



284 9 Survival Analysis

Interpret the Log Hazard Ratios: -
LHR = 1 implies no effect on hazard h(t)
LHR > 1 implies an increase in hazard h(t)
LHR < 1 implies a decrease in hazard h(t)
The researcher must interpret the results based on theoretical and practical 
insights. grade=unknown has a negative HR. It is left to the researcher to 
interpret, as its impact is unknown. Similarly, it may be incorrect to say 
that size decreases the impact. Therefore, we skip the interpretation, as it 
is beyond the scope of this tutorial. Log Hazard Ratios are indicative of the 
influence of features. However, this measure is not unbiased as the features 
may exhibit multicollinearity.

Tutorial 9.3.4 Rank the Features 

Define a Function to Fit and Score Survival, considering only one feature at 
a time
def RankFeatures(X, Y):
    FeatureCount = X.shape[1]
    scores = np.empty(FeatureCount)
    survival_model = CoxPHSurvivalAnalysis()
    for j in range(FeatureCount):
        Xj = X[:, j:j+1] # consider jth column (one feature)
        survival_model.fit(Xj, Y)
        scores[j] = survival_model.score(Xj, Y)
    return scores

Using OHE, transform the categorical variables to numeric variables
Xn = OneHotEncoder().fit_transform(X)

Compute feature scores using the function RankFeatures that we defined
feature_scores = RankFeatures(Xn.values, Y)

Display the Scores
 pd.Series(feature_scores, index=Xn.columns).sort_values(ascending = 
False)

The features are ranked: -
X202240_at            0.659134
X218883_s_at          0.647393
X203306_s_at          0.644363
X204014_at            0.633506
size                  0.626373
...  
X218914_at            0.501704
X217815_at            0.493498
X221344_at            0.492110
X205848_at            0.491983
grade=intermediate    0.478412
Length: 82, dtype: float64   



285

Table 9.3  One-hot encoding of the variable ‘grade’

Original Variable OHE Recoded as 3 Variables

grade grade= 
intermediate

grade=
poorly differentiated

grade= 
unkown

Well-differentiated 000 0 0 0
unknown 001 0 0 1

poorly differentiated 010 0 1 0
intermediate 100 1 0 0

9.4 Parsimonious Model for Survival Analysis

Interpretation of the Feature Ranking: -
A higher feature score (bi-variate score of a feature with survival time) 
shows a stronger influence of a feature or covariate. Therefore, the features/
covariates at the top are expected to be more important. Log hazard ratio 
and the bi-variate score of features/covariates with survival time indicate 
the influence of features/covariates. However, both measures are not unbiased 
indicators, as the features may exhibit multicollinearity

9.4  Parsimonious Model for Survival Analysis

A parsimonious model has a minimum number of parameters that offer good 
explanatory power. Naturally, the reduction in parameters results in dimension 
reduction and data reduction. To build a parsimonious model, we need to iden-
tify the vital features. However, it will be daunting when the feature count is high. 
There are multiple methods for feature selection (Table 9.3):-

• Rank and select features using Cox Proportional Hazards Model.
• Grid Search.
• Random Forest Survival Analysis Model.

The previous section discussed feature selection using the Cox proportional haz-
ards model. We will explore grid search and Random Forest Survival Analysis 
models subsequently.

9.4.1  Grid Search to Build a Parsimonious Model

The previous section discussed feature selection using the Cox proportional 
hazards model. How many variables would we select from the feature rank list to 
build a parsimonious model? The scikit-learn software library provides a solution 
through ‘grid search’.



286 9 Survival Analysis

SelectKBest Parameter

The parameter ‘SelectKBest’ returns k best features and discards all other features, 
based on univariate statistical tests. Note that for feature selection, different meth-
ods can be used in SelectKBest. For example, SelectKBest (chi2, k = 20) implies 
the Chi-square test is used for feature ranking and 20 features will be selected.

In this tutorial, we define the function ‘RankFeatures’. This function uses the 
Cox regression test to score each feature against the survival time, one feature at a 
time. Before estimation, we use ‘SelectKBest’ in a pipeline, a pre-processing step.

Tutorial 9.4.1    BC Case - Grid Search for a Parsimonious Model   

Setup Data and Libraries

from sksurv.datasets import load_breast_cancer
X, Y = load_breast_cancer()
from   sklearn.model_selection import GridSearchCV, KFold
from   sklearn.pipeline import Pipeline
from   sksurv.preprocessing import OneHotEncoder
from   sksurv.linear_model import CoxPHSurvivalAnalysis
from   sklearn.feature_selection import SelectKBest 
import numpy  as np
import pandas as pd

Grid Search for Best Features

Cox Regression is performed for each feature Xi, taken one at a time, against 
the survival time. The concordance index that emerges (survival_model.score) 
indicates the ranking of the feature

Define a function to rank a given set of features {Xi | i=1 to n}

def RankFeatures(X, Y):
    FeatureCount = X.shape[1]          # 82 features in this tutorial
    scores = np.empty(FeatureCount)    # placeholder for 82 C-index  

# Cox proportional hazards model
    survival_model = CoxPHSurvivalAnalysis()  
    for j in range(FeatureCount):
        Xj = X[:, j:j+1]  # select one feature (column) at a time

# Cox regression performed for the selected feature against survival time 
        survival_model.fit(Xj, Y) 

# Save the C-index computed above (selected feature vs survival time) 
        scores[j] = survival_model.score(Xj, Y) 
    return scores



2879.4 Parsimonious Model for Survival Analysis

# Setup Processing Pipeline
# The parameter SelectKBest is described in an earlier section
pipe = Pipeline([('encode', OneHotEncoder()),
                 ('select', SelectKBest(RankFeatures)), 
                 ('model',  CoxPHSurvivalAnalysis())])

*** Very Important ***
It is computationally expensive if we decide to explore all 82 features and 
covariates. For demonstration, let us consider a maximum of 61 features, from 
which we will narrow down to a fewer number of vital features

feature_set = np.arange(1, 61) # Consider 1 to 60 features
param_grid = {'select__k': feature_set} 

Setup 5-fold cross-validation with shuffle
KF  = KFold(n_splits=5, random_state=1, shuffle=True)

Setup Grid Search Parameters
gcv = GridSearchCV(pipe, 
                   param_grid, 
                   cv = KF,
                   return_train_score = True)

Perform Grid Search, varying the set of features from 1 to 60
gcv.fit(X, Y)

Display Grid Search Results

Check how many features are selected.
gcv.best_params_ #  {'select__k': 47}  # 47 features/covariates selected    
gcv.best_score_ #  0.705              # test score

Sort the Results based on test data
Test_Results = pd.DataFrame(gcv.cv_results_).sort_values(by='mean_test_score', 
                       ascending=False)

Print-Test Results
Test_Results[['param_select__k','params',
'mean_test_score','mean_train_score']]

The best test score is (0.705492) with 47 features selected
   param_select__k             params  mean_test_score  mean_train_score
46              47  {'select__k': 47}         0.705492          0.908115
47              48  {'select__k': 48}         0.698546          0.911145
45              46  {'select__k': 46}         0.697641          0.905013
42              43  {'select__k': 43}         0.694297          0.895746
..
0                1   {'select__k': 1}         0.610806          0.667295
56              57  {'select__k': 57}              NaN              
57              58  {'select__k': 58}              NaN              



288 9 Survival Analysis

Sort TRAIN Results
Train_Results = pd.DataFrame(gcv.cv_results_).sort_values(by='mean_train_

score', ascending=False)

Print TRAIN Results
Train_Results[['param_select__k', 'params',
'mean_test_score','mean_train_score']]

The best train score is (0.953682) with 59 features selected
   param_select__k             params  mean_test_score  mean_train_score
58              59  {'select__k': 59}         0.659351          0.953682
59              60  {'select__k': 60}         0.650626          0.952504
...
0                1   {'select__k': 1}         0.610806          0.667295
56              57  {'select__k': 57}              NaN              
57              58  {'select__k': 58}              NaN              

Run the Model with the Selected Model parameters 

Run the model with the selected parameters, over the entire dataset

pipe.set_params(**gcv.best_params_)
pipe.fit(X, Y)

Extract the features and their score from ‘pipe’ 
OHE, KBest, CoxPH = [s[1] for s in pipe.steps]

Check the contents of the variables OHE, KBest, and CoxPH
OHE       # OneHotEncoder()
KBest     # SelectKBest(k=47, score_func=<function RankFeatures)
CoxPH     # CoxPHSurvivalAnalysis()

Format and print the features and their score
pd.Series(CoxPH.coef_, index=OHE.encoded_columns_[KBest.get_support()])

features (47)                     Score
-------------                 ---------
X200965_s_at                   0.400214
X201091_s_at                  -0.311317
X201288_at                    -0.025255
X201368_at                    -0.274931
X201663_s_at                   1.520212
X201664_at                    -0.798827
X202239_at                    -0.534744
X202240_at                     1.097430
X202418_at                     0.045413
X202687_s_at                  -0.396493
..
er=positive                   -2.742841
grade=poorly differentiated   -0.050478
size                           0.112297



2899.4 Parsimonious Model for Survival Analysis

Interpretation of the Model Parameters from Grid Search:
1. The number of features selected in the model: 47
2. Selected Features and their Coefficients are listed above
3. Best Training Score: 0.908

9.4.2  Random Forest Survival Analysis Model

As we discussed in Sect. 9.5, a parsimonious model is a model with a minimum 
number of parameters that offers good explanatory power. For this, the follow-
ing methods may be used—Rank and select features using the Cox Proportional 
Hazards Model, Grid Search, and Random Forest Survival Analysis Model. In this 
section, we will discuss the Random Forest Survival Analysis Model. This section 
introduces the basic concepts, followed by a tutorial.

Random Survival Forrest

A random survival forest (RSF) is an ensemble of decision trees that provide a 
single aggregated result (James et al. 2021). Random forests are discussed in 
Sect. 11.6.5—Ensemble Methods. Multiple trees in the random forest reduce the 
chances of overfitting. RFS is used for risk prediction of right-censored outcomes 
in various areas such as biomedical research, and finance.

RSF could use classification and regression models. Several split criteria can be 
used for splitting a node into subtrees, the most popular one being the log-rank test 
(see Sect. 9.4). To evaluate the prediction accuracy of the RFS model, we can use 
Harrell’s concordance index (or C-index). As we have discussed, the concordance 
index is defined as the proportion of all comparable pairs in which the predictions 
and outcomes are concordant (please check the section on the concordance index 
for further description). A random forest survival analysis tries to ensure that indi-
vidual trees are not correlated by employing the following measures:

• building each tree on a different bootstrap sample of the original training data.
• at each node, evaluate the split criterion only for a randomly selected subset of 

features and thresholds.

Predictions are formed by aggregating predictions of individual trees in the ensem-
ble. The criterion for split is based on the log-rank test.

Permutation Importance

To rank features, we may use permutation-based methods. This involves remov-
ing features, one at a time, and measuring the reduction in the model score 
(R-squared, F1). After removing each feature, should we train the algorithm on 
the entire dataset? This is costly. Instead, we may consider only the test data set, as 
mentioned below. Take the test data set. Replace the selected feature with random 
noise. Use the original model to compute the score.

http://dx.doi.org/10.1007/978-981-99-0353-5_11


290 9 Survival Analysis

The Software Package

The default values for the parameters controlling the size of tree growth and prun-
ing are critical while dealing with large data sets with numerous features, as they 
determine the processing complexity. The RandomSurvivalForest module is cur-
rently under development, and more features are expected. For example, parame-
ters are currently unavailable to limit the tree's depth or rank the features.

Some of the parameters that may be important to a researcher are listed below: -

• n_estimators (integer, default: 100)—The number of trees in the forest.
• max_depth (int default: None)—The maximum depth of the tree. If None, then 

nodes are expanded until all leaves are pure (all samples belong to the same 
class) or until all leaves have samples less than ‘min_samples_split’.

• min_samples_split (default: 6): A node with more samples than this parameter 
becomes a candidate for the split. The value can be also given as a fraction of 
the number of samples.

• minimum sample size (default: 3): A node split is considered only if it leaves at 
least ‘min_samples_leaf’ samples in the left and right branches. This can affect 
the regularization of the model, especially in regression. The value can be also 
given as a fraction of the number of samples.

• Setting the parameter random_state to a specific integer helps reproducibility 
results on repeated trials (Fig. 9.7).

Tutorial 9.4.2    BC Case - Random Forest Survival Analysis (RFS) Model

Note: - This Random Forest Survival Analysis tutorial was run in Google Co-
lab. For RFS, install scikit-survival (!pip install scikit-survival). Install 
eli5 (!pip install eli5) for feature ranking. If you face a problem “restart 
and run” Colab

Tutorial 9.4.2.1 Data Setup 

!pip install scikit-survival
load dataset

from sksurv.datasets import load_breast_cancer
X, Y = load_breast_cancer()

import libraries
from sksurv.preprocessing import OneHotEncoder
from sksurv.ensemble import RandomSurvivalForest
import matplotlib.pyplot as plt

Recode Covariate Categories using OHE
X = OneHotEncoder().fit_transform(X)
random_state_chosen = 20



2919.4 Parsimonious Model for Survival Analysis

Tutorial 9.4.2.2 Build and Test RFS Model

Design the Model Random Forrest Model
RFS = RandomSurvivalForest(n_estimators=256,
                           min_samples_split=4,
                           min_samples_leaf=2,
                           max_features="sqrt",
                           n_jobs=-1,
                           random_state = random_state_chosen)

Fit the Random Forrest Model
RFS.fit(X, Y)

Check the Random Forrest Model Score on the entire Data
print(RFS.score(X, Y)) #  0.9760

Tutorial 9.4.2.3 Survival Prediction – Plot

Select the first 4 subjects (rows 0,1,2,3)
X_test_sel = X[0:4]

Predict the survival probability distribution of the selected subjects
surv = RFS.predict_survival_function(X_test_sel, return_array=True)

Plot the survival probability distribution of the 4 selected subjects
ls=['solid','dashed','dashdot','dotted']
i=0
for i, s in enumerate(surv):
    plt.step(RFS.event_times_, s, where="post", 
label=str(i),linestyle=ls[i])
    i+=1
plt.title ('Random Forrest Survival Prob.- 4 Test Cases',  fontsize = 14)
plt.ylabel('probability of survival S(t) ->',  fontsize = 14)
plt.xlabel('time (days) -> ∞', fontsize = 14)
plt.legend()
plt.grid(True)
plt.legend(loc='best')

See Figure 9-6: Area Under The Curve for 4 Subjects. AUC is discussed in 

section 9.5
Tutorial 9.4.2.4 Feature Ranking

Setup Data / Libraries as in   - Tutorial 9.4.1 Data Setup.
Build and Test RFS Model as in Tutorial 9.4.2 Build and Test RFS Model.

Install eli5:
We will use the module ‘Permutation Importance’ for computing feature impor-
tance by measuring the effect on the model score, with the entry or exit of a 
feature. Note that this method is similar to the step-wise regression method.



292 9 Survival Analysis

Fig. 9.7  ROC curve—TPR 
versus FPR

Fig. 9.6  Area under the 
curve for 4 subjects {0, 1, 
2, 3}

import eli5
from eli5.sklearn import PermutationImportance

features_list = list(X.columns)

Score the features: -
perm = PermutationImportance(RFS, n_iter=15, random_state=0)
perm.fit(X, Y)
eli5.show_weights(perm, feature_names=features_list)

Feature Ranking List: -
0.0254 ± 0.0499   X202240_at
0.0233 ± 0.0386   X204014_at
0.0183 ± 0.0181   X203306_s_at
0.0178 ± 0.0408   X219724_s_at
0.0058 ± 0.0275   X218883_s_at
0.0054 ± 0.0032   X203391_at
0.0036 ± 0.0036   X207118_s_at



2939.5 Performance Metrics

0.0030 ± 0.0079   X201663_s_at
0.0030 ± 0.0106   X208180_s_at
0.0018 ± 0.0049   X204888_s_at
0.0018 ± 0.0034   X212014_x_at
0.0015 ± 0.0024   X220886_at
0.0015 ± 0.0122   X221882_s_at
0.0015 ± 0.0030   X221344_at
0.0012 ± 0.0040   X210028_s_at
0.0010 ± 0.0030   X212567_s_at
0.0010 ± 0.0044   X221816_s_at
0.0008 ± 0.0090   X221916_at
0.0008 ± 0.0082   X211040_x_at
0.0008 ± 0.0035   X201664_at
… 62 more …

9.5  Performance Metrics

Some of the performance metrics used in survival analysis are listed below. We 
will discuss them in the subsequent sections.

• Common Metrics: Sensitivity, Specificity, PPV, NPV, Accuracy
• Brier Score
• Receiver Operating Characteristic (ROC) curves, Area under the ROC Curve 

(AUC)
• Concordance Index (C-Index).

9.5.1  Score Based on Outcome Counts

The performance measures, Sensitivity, Specificity, PPV, NPV, and Accuracy 
are shown in Table 9.4. We have discussed the basic concepts underlying these 
measures in the Chapter on classification. AUC and concordance index provide 
discriminatory performance indices to judge the goodness of fit of a model. They 
can be extended to survival analysis models by incorporating the constraints of 
right-censored data. We will discuss this in the subsequent sections.

9.5.2  Brier Score

The Brier score is used to evaluate the accuracy of a survival prediction 
at a given time t. It represents the mean value of the squared distances between 
the observed survival status and the estimated survival probability. It is a value 
between 0 (best) and 1 (worst). The Brier score can be expressed as,

B(t) =
1

N

N
∑

t=1

(fe − fo)
2



294 9 Survival Analysis

Table 9.4  Performance measurement of classification models

Predicted labels

1 0

Observed 
labels

1 True Positives (TP) False 
Negatives 
(FN)

Sensitivity, Recall, 
Hit Rate, True 
Positive Rate (TPR) 
=  TP/(TP + FN)

0 False Positives (FP) True 
Negatives 
(TN)

False Positive 
Rate (FPR) =FP/
(TN+FP)Specificity, 
Selectivity, True 
Negative Rate (TNR) 
=TN/(TN+FP)

Precision, Positive 
Predictive Value 
(PPV) = TP/(TP + FP)

False Positive 
Rate (FPR) =  
FP/(TN + FP)

Accuracy =  
(TP + TN)/
(TP + TN + FP + FN)

where,

fo     is the observed survival status
fe     is the survival probability estimated by one of the models
N     is the total number of observations

9.5.3  Area Under the Curve (ROC, AUC)

The area under the ROC (AUC) and concordance index provide discriminatory 
performance indices to judge the goodness of fit of a model. They can be extended 
to survival analysis models, by incorporating the constraints of right-censored data 
(James et al. 2021).

ROC (receiver operating characteristic curve) is a probability distribution 
obtained by plotting the True Positive Rate (y-axis) against False Positive Rate 
(x-axis) depicting the performance of a classifier at all classification thresh-
olds (See Sect. 11.6.6). AUC is the area under the ROC curve. The AUC value 
is expected to be between 0.5 (random prediction) and 1 (perfect prediction). In 
Fig. 9.7, AUC = 0.79. This implies that the accuracy of the model is 79%.

From Table 9.4, it may be noted that,

Sensitivity = True Positive Rate (TPR) = Recall = TP /(TP + FN)

Specificity = True Negative Rate = TN / (TN + FP)

1−Specificity = 1− [TN / (TN + FP)]

= [(TN + FP)−TN]/ (TN + FP)

= FP / (TN + FP)

= False Positive Rate (FPR)

http://dx.doi.org/10.1007/978-981-99-0353-5_11


295

The ROC curve and AUC can be extended to survival data by defining sen-
sitivity (true positive rate) and specificity (true negative rate) as time-dependent 
measures and considering the data as right-censored. Assume cumulative cases as 
the number of all the individuals who experienced an event by time t (ti ≤ t), and 
dynamic cases are those with ti > t. The corresponding ‘cumulative by dynamic’ 
AUC statistic shows the goodness of fit of a model in discriminating the subjects 
who encounter the event at a given time (ti ≤ t) from the subjects who encounter 
the event after (ti > t).

The scikit-learn software module, sksurv.metrics.cumulative_dynamic_auc pro-
vides an estimate of cumulative/dynamic AUC for right-censored time-to-event 
data. Uno has developed a censored-pairs estimator of the concordance index 
based on inverse probability weighting. Given an estimator f̂ (Xi) of the ith sub-
ject’s risk score, the cumulative/dynamic AUC at time t can be defined using ‘the 
inverse probability of censoring weights’ (IPCW) of the features. For details, refer 
to (Brentnall and Cuzick 2018). Our tutorial will use IPCW’s computed using the 
Kaplan–Meier estimator. Censoring is assumed to be at random. Time alone is 
considered, and the feature-set is not considered. To estimate IPCW, access to sur-
vival times from the training data is required. Therefore, check and ensure that the 
survival times of test data are within the range of survival times of training data. 
Otherwise, the system will throw an error indicating the above.

9.5.4  Concordance Index

Like AUC, the concordance index or C-Index also provides discriminatory per-
formance indices to judge the goodness of fit of a model. They can be extended to 
survival analysis models by incorporating the constraints of right-censored data.

An example for manual identification of a concordant pair is shown below. 
Table 9.5 shows the survival data of six cases down the rows. The probability of 
survival after 289 days (Xi1) and after 404 days (Xi2) are shown in columns two 
and three respectively.

Let us compare Case 1 (X1) with the other cases (Xi, i = 1, 2, 3, 4, 5, 6). If the 
probability of survival of two cases increases or decreases over time, the two cases 
are called a concordant pair. If the probability of the cases match at time point one 
as well as time point two, the two cases are called a tied pair. Otherwise, the cases 
form a discordant pair. The computations are shown in Table 9.6. From Table 9.6, 
we observe that {X1, X2} forms a concordant pair, as their probability of survival 
increases over time. The pair {X1, X3} is also a concordant pair, as their probabil-
ity of survival decreases over time. The pair {X1, X6} is tied as their probabilities 
are all exactly the same. The pairs {X1, X4}, {X1, X5} are discordant pairs.

The concordance index is defined as the proportion of observations that the 
model can order correctly in terms of survival time. This can be expressed as,

concordance index = concordant pairs
/

total number of possible evaluation pairs

= concordant pairs
/

(concordant pairs + discordant pairs)

9.5 Performance Metrics



296 9 Survival Analysis

Table 9.5  CI—comparison of survival probabilities of six cases over two time periods

Case Xi Probability of survival

After 289 days (Xi1) After 404 days (Xi2)

1 0.97 0.94

2 0.99 0.96

3 0.96 0.92

4 0.95 0.95

5 0.98 0.93

6 0.97 0.94

Table 9.6  CI—investigation of concordance between 5 pairs of cases

Compare case 1 (X1) with other cases (Xi, i = 2, 3, 4, 5, 6)

X11–Xi1 X12–Xi2 Are X11–Xi1 and 
X12–Xi2 
of the same sign?

X1 versus X2 0.97–0.99 = −0.02 0.94–0.96 = −0.02 Yes. Concordant pair

X1  versus  X3 0.97–0.96 = 0.01 0.94–0.92 = 0.02 Yes. Concordant pair

X1  versus  X4 0.97–0.95 = 0.02 0.94–0.95 = −0.01 No. Dis-Concordant 
pair

X1  versus  X5 0.97–0.98 = −0.01 0.94–0.93 = 0.01 No. Dis-Concordant 
pair

X1 versus X6 0.97–0.97 = 0 0.94–0.94 = 0 Tied pair

The concordance index calculation can be extended to survival analysis to accom-
modate censored data, by defining sensitivity and specificity as time-dependent 
measures. The index provides a reliable ranking of the survival time based on 
the individual risk scores. The index is also called Harrell's C-index, or simply 
C-index. The concordance index is a generalization of the area under the ROC 
curve (AUC) that can account for censored data. However, we are not providing 
any mathematical proof here.

Tutorial 9.5.1    BC Case - Compare ROC Curve and Concordance Index

!pip install scikit-survival
Setup Data / Libraries 

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sksurv.datasets         import load_breast_cancer
from sklearn.model_selection import train_test_split
from sksurv.preprocessing    import OneHotEncoder, encode_categorical



2979.5 Performance Metrics

from sksurv.metrics          import (    
                                    concordance_index_censored,
                                    concordance_index_ipcw,
                                    cumulative_dynamic_auc,
                                    integrated_brier_score
                                    )

x, y = load_breast_cancer()
x.columns # ['X200726_at', ... , 'age', 'er', 'grade', 'size'])

x = OneHotEncoder().fit_transform(x)
x.info()        # Total 82 columns

numeric_columns = list(x.columns)

There are 82 features. If we plot them all, the plot will be cluttered. So we 
are selecting the top 9 features identified in Tutorial 9.4.

numeric_columns = list(('X202240_at', 'X204014_at', 'X203306_s_at',
                   'X219724_s_at', 'X218883_s_at', 'X203391_at',
                   'X207118_s_at', 'X201663_s_at', 'X208180_s_at'))

Train (80%) Test (20%) Split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, 
         random_state=0)

Convert x_train/x_test from pandas DataFrame to NumPy Array
x_train = np.array(x_train)
x_test  = np.array(x_test)
y.dtype # ('e.tdm', '?'), ('t.tdm', '<f8')

# Divide Survival Time to 10 slices of 10 percentiles
times = np.percentile(y["t.tdm"], np.linspace(10, 91, 10))
print(times)
# [943.6 1725.3 2680.0 3602.17 ... 5015.68 5502.66 5718.86 6180.17]

Compute Concordance Index, and Plot ROC

# Function to plot AUC
def plot_cumulative_dynamic_auc(risk_score, label):
    auc, mean_auc = cumulative_dynamic_auc(y_train, y_test, risk_score, 
times)
    plt.plot(times, auc, marker="o", label=label)
    plt.xlabel("days from enrolment")
    plt.ylabel("time-dependent AUC")
    plt.axhline(mean_auc, linestyle="--", color='black',linewidth=0.5)
    plt.title('Area Under ROC Curve')
    plt.legend()



298 9 Survival Analysis

Fig. 9.8  ROC curve of the Top 9 features and their concordance index

See Figure 9-8: ROC Curve of the Top 9 Features
 
ci_ipcw_matrix = pd.DataFrame()
ci_ipcw_matrix['Co-Variate'] = list(numeric_columns)
ci_ipcw_matrix['ci_ipcw'] = 0.0
plt.rcParams['figure.figsize'] = [7.2, 4.8]  #plot area

For Each Feature, weighted compute Concordance index (ipcw) and invoke plot 
function

for i, col in enumerate(numeric_columns):
    plot_cumulative_dynamic_auc(x_test[:, i], col)
    ci_ipcw = concordance_index_ipcw(y_train, y_test,
                     x_test[:, i], tau=times[-1])
    ci_ipcw_matrix['ci_ipcw'][i] = ci_ipcw[0]

See Figure 9-8: ROC Curve of the Top 9 Features. The plot shows the estimated 
area under the time-dependent ROC curve. The average across all time points 
is shown as a dashed line.

Print the computed concordance_index for each feature
ci_ipcw_matrix.sort_values(by='ci_ipcw',ascending=False )

     Co-Variate   ci_ipcw
1.  3  X219724_s_at  0.566479
2.  6  X207118_s_at  0.562888
3.  7  X201663_s_at  0.542749
4.  0    X202240_at  0.487923
5.  2  X203306_s_at  0.485421
6.  5    X203391_at  0.405913
7.  1    X204014_at  0.349195
8.  4  X218883_s_at  0.344145
9.  8  X208180_s_at  0.323700



2999.5 Performance Metrics

Interpret ROC curve and Concordance Index

See Figure 9-8 for the ROC curve and Concordance Index (ci_ipcw_matrix).
1. From the figure, it is observed that the following are the most discrimi-
nating features in order (they cover a larger area) – the most discriminating 
features or the best predictors 
'X219724_s_at'
'X207118_s_at', 'X201663_s_at'
2. The following are the least discriminating features, as they cover a 
smaller area
'X218883_s_at'
'X208180_s_at'
3. The concordance index of the top 9 features is shown by the side of Figure 

9-9, in rank order. The ranking corresponds to the area under the ROC curve

Tutorial 9.5.2 BC Case - Compare the Performance of Estimators CPH, RSF 

Data Setup

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sksurv.datasets         import load_breast_cancer
from sklearn.model_selection import train_test_split
from sksurv.preprocessing    import OneHotEncoder, encode_categorical
from sksurv.metrics          import (    
                                    concordance_index_censored,
                                    concordance_index_ipcw,
                                    cumulative_dynamic_auc,
                                    integrated_brier_score
                                    )
from sksurv.linear_model     import CoxPHSurvivalAnalysis 
from sksurv.ensemble         import RandomSurvivalForest

x, y = load_breast_cancer()
There are 82 features. We are selecting the top 9 features identified in Tuto-
rial 9.4 and used in Tutorial 9.5

numeric_columns = list(('X202240_at', 'X204014_at', 'X203306_s_at',
                   'X219724_s_at', 'X218883_s_at', 'X203391_at',
                   'X207118_s_at', 'X201663_s_at', 'X208180_s_at'))

Split 80% to training data (pandas data frames); 20% to training
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, 
         random_state=0)
x_train = np.array(x_train[numeric_columns])
x_test  = np.array(x_test[numeric_columns])
y.dtype # ('e.tdm', '?'), ('t.tdm', '<f8')
times = np.percentile(y["t.tdm"], np.linspace(10, 91, 10))



300 9 Survival Analysis

print(times)
# [943.6 1725.3 2680.0 3602.17 … 5015.68 5502.66 5718.86 6180.17]

Build CPH Model

CPH = CoxPHSurvivalAnalysis()
CPH.fit(x_train, y_train)

CPH_Risk = CPH.predict(x_test)

CPH_AUC, CPH_AUC_Mean = cumulative_dynamic_auc(
    y_train, y_test, CPH_Risk, times)

Build RSF Model

RSF = RandomSurvivalForest(n_estimators=100, min_samples_leaf=7, 
random_state=0)

RSF.fit(x_train, y_train)

RSF_CH_Functions = RSF.predict_cumulative_hazard_function(
                       x_test, return_array=False)
RSF_Risk = np.row_stack([chf(times) for chf in RSF_CH_Functions])
RSF_AUC, RSF_AUC_Mean= cumulative_dynamic_auc(
                       y_train, y_test, RSF_Risk, times)

Plot CoxPH Versus RSF

CoxPHleg ="CoxPH mean AUC = " +str(np.round(CPH_AUC_Mean,2))
RSFleg =  "RSF mean AUC = "   +str(np.round(RSF_AUC_Mean,2))
Leg = [CoxPHleg, RSFleg]
plt.plot(times, CPH_AUC, "o--")
plt.plot(times, RSF_AUC, "s-.")
plt.xlabel("days from enrolment", fontsize=14)
plt.ylabel("time-dependent AUC", fontsize=14)
plt.title("CoxPH estimate Versus RSF estimate", fontsize=14)
plt.legend(Leg)
plt.grid(True)

See Figure 9-9: AUC from Cox PH versus RSF Model

Interpret Model Performance (CoxPH versus RSF)

There are 82 features and covariates. We selected the top 9 features identi-
fied in Tutorial 9.4 and were used in Tutorial 9.5. 
Figure 9-9 shows that both the estimators CoxPH (score 0.75) and Random Sur-
vival Forrest (score 0.81) perform in comparable terms. RSF appears to be 
more accurate, with a higher score of 0.81



301

Fig. 9.9  AUC from cox PH 
versus RSF model

Data Analytics in Action

The concordance index finds wide application in areas such as medicine and 
finance to measure a model’s ability to discriminate against subjects based on their 
risk (Ahuja and Van der Schaar 2019a, b). A Simple concordance index addresses 
one event (e.g., discharged alive). However, it is not suitable for assessing the prog-
nostic ability of a model when multiple event types are involved, such as being on 
ventilation, experiencing organ failure, and being discharged alive simultaneously. 
Early warning systems incorporating feeds from multiple event types may require 
an improved approach, such as a joint concordance index or considering one covar-
iate versus all other covariates together (Ahuja and Van der Schaar 2019a, b).

Data Analytics in Action 

Survival Analysis of Patients with COVID-19 in India by Demographic 
Factors: Quantitative Study (Kundu et al. 2021).
The study period was January 30, 2020, up to June 30, 2020. To contain the 
pandemic, the government of India had declared a lockdown on March 25, 
2020. Despite that, COVID-19 cases increased and surpassed 450,000, over 
the period of five months, reportedly. Data with missing values and spurious/
inconsistent data were removed from the data collected. A sample of 26,815 
subjects was considered for analysis.

The Kaplan–Meier survival function indicated that the probability of 
survival of patients with COVID-19 declined during the study period of 
5 months. The log-rank test (P < 0.001) and Wilcoxon test (P < 0.001) con-
firmed this conjecture. Significant variability was observed in the age groups. 
Age increased the risk of COVID-19 casualties. The Cox proportional hazard 



302 9 Survival Analysis

model indicated that male patients with COVID-19 had a higher risk of fatality 
compared to female patients (hazard ratio 1.14; standard error 0.11; for a confi-
dence interval of 95%). The survival rates in the south, northeast, and east were 
observed to be better than in the north, central, and western regions, in order.

Summary

Survival analysis is a statistical study of time and events. The event of interest 
may be death, recovery, or any specific experience of interest. Time is the dura-
tion from the beginning of the follow-up of an individual until an event occurs. 
Numerous features influence the prognosis (the likely course of a medical con-
dition)—e.g., Age, Gender, Genomics (a comprehensive set of genetic informa-
tion), months since occurrence/diagnosis, prior therapy, current treatment, etc. An 
individual may not experience the event during follow-up, or we may lose con-
tact with him/her, or he/she might withdraw from the study. Despite follow-up, we 
may not know the exact survival time. This leads to the incompleteness of data, 
called censoring. Data is called right censored when we are not aware of the exact 
end time. Similarly, data is left censored when we do not know the exact start 
time. Data is interval-sensitive, or interval-censored when we have a time interval, 
rather than the exact time of an event.

The survivor function, also known as the survival or reliability function, pro-
vides the likelihood that an individual will survive beyond a specified time. The 
Kaplan–Meier survival estimate is a straightforward calculation of the probability 
of survival, derived from data on “survival time”. The log-rank test compares the 
distribution of survival probabilities among different subject groups, such as those 
with or without co-morbidities. Both Kaplan–Meier estimation and the log-rank 
test are non-parametric methods for survival estimation. To examine the impacts 
of multiple numeric predictors and covariates, survival regression models like the 
Cox proportional hazards model can be employed. Another approach is the ran-
dom survival forest, which comprises an ensemble of decision trees capable of 
handling numeric and categorical predictors.

A parsimonious model is characterized by having the least number of param-
eters while still delivering robust explanatory power. Constructing such a model 
involves pinpointing the essential features, a challenging endeavor when faced 
with many features. Several techniques, such as the Cox Proportional Hazards 
Model, Grid Search, and Random Survival Forest, among others, exist for feature 
selection. While the Cox proportional hazards model aids in ranking features, it 
does not specify the optimal number of variables for achieving parsimony. The 
scikit-learn software library addresses this concern with its ‘grid search’ module, 
providing a solution for determining the right balance between simplicity and 
explanatory effectiveness in model construction.



303Questions

A random survival forest (RSF), an ensemble of decision trees, provides a 
single aggregated result. RSF could be built on multiple numeric and categorical 
predictors and use classification and regression models. The common approach to 
evaluate the prediction accuracy of an RSF model is Harrell's concordance index.

AUC and the concordance index are commonly employed performance met-
rics in survival analysis. The ROC curve, depicting the True Positive Rate against 
the False Positive Rate, forms the basis for AUC, representing the area under the 
curve. AUC values range from 0.5 (random prediction) to 1 (perfect prediction). 
The concordance index gauges a model's ability to correctly order survival times 
by considering the proportion of concordant pairs among all possible pairs. It 
serves as a generalized metric to accommodate censored data and applies to binary 
classification, offering a dependable ranking of survival times based on individual 
risk scores. However, the concordance index is limited to assessing a single event 
and cannot evaluate the prognostic ability of models for multiple event types. 
An enhanced approach like a joint concordance index is necessary for the effec-
tive evaluation of models in early warning systems predicting event times across 
diverse types.

Artificial neural network (ANN) based models are extensively applied to bio-
medical fields such as imaging analysis and diagnosis. Various performance 
metrics are used in survival analysis, which includes metrics derived from classi-
fication problems such as sensitivity, specificity, accuracy, brier score, AUC, con-
cordance index, etc.

Questions

Comprehension

1. What are the primary goals of survival analysis, and how do they contribute to 
our understanding of time-related events?

2. Explain the different types of censored data (right-censored, left-censored, 
interval-censored) with examples. How does each type affect the analysis? 
Discuss the challenges and considerations when dealing with left-censored data 
in survival analysis.

3. Describe the survivor function and hazard function.
4. Explain stratification in sample selection for estimating survival probability.
5. How does the Kaplan–Meier survival estimate calculate the survival probability 

at a given time point? Explain the significance of the conditional probability 
term in the Kaplan–Meier survival estimate formula.

6. Elaborate on the grid search technique for building a parsimonious survival 
model. What advantages does this method offer in terms of model simplicity 
and performance?



304 9 Survival Analysis

7. Describe the role of the concordance index in survival analysis. State and 
explain the formulae.

8. How does the concordance index differ from traditional metrics like the area 
under the ROC curve?

9. What is the Brier score, and how does it assess the accuracy of survival predic-
tions? Provide an example interpretation.

Analysis

10. How does survival analysis differ from a traditional binary classification 
problem?

11. Compare and contrast the Kaplan–Meier survival estimation method with the 
Cox proportional hazards survival model. In what scenarios would you prefer 
one over the other?

12. How does the log-rank test contribute to the comparison of survival curves? 
Please provide an example scenario where it would be beneficial.

13. Describe the key components of the Cox Proportional Hazards Model for-
mula. How does the Cox model handle the influence of categorical covariates 
on survival? What does a hazard ratio (HR) greater than 1, equal to 1, and less 
than 1 signify in the context of the Cox model?

14. Explain the Random Survival Forest (RSF) concept and its application in sur-
vival analysis. How does the RSF method address the issue of overfitting? 
What is permutation importance, and how is it used in the context of feature 
ranking with RSF?

15. Discuss whether we can use the concordance index for predicting risk based 
on a set of covariates in the case of multiple failures.

16. How do the Receiver Operating Characteristic (ROC) curve and Area Under 
the Curve (AUC) extend to survival analysis, considering right-censored data?

Application

 17. In a clinical trial setting, how might survival analysis be applied to assess the 
effectiveness of a new treatment compared to a standard treatment? Discuss 
the key variables and metrics involved.

 18. Imagine you are working in a financial institution and want to predict the time 
until a customer defaults on a loan. How can survival analysis be utilized to 
model this scenario? What variables would you consider?

 19. In a public health campaign aimed at reducing the incidence of a particular 
disease, how could survival analysis be applied to evaluate the impact of the 
intervention over time? What challenges might arise in such an analysis?

 20. Suppose you are an HR analyst in a company and want to understand the 
average tenure of employees in different departments. How could survival 
analysis help you in this scenario? What factors might influence employee 
retention?



305Exercises

 21. A manufacturing company wants to assess the reliability of a new product in 
the market. How could survival analysis be employed to estimate the proba-
bility of the product functioning without failure for a certain duration? What 
considerations are important in this analysis?

 22. An insurance company wants to assess the risk of policyholders experiencing 
a certain event, such as a health-related incident, over time. How could sur-
vival analysis contribute to risk assessment in the insurance industry? What 
factors would be crucial to consider?

 23. Imagine you are conducting a study on the survival of cancer patients. How 
would you utilize the Cox Proportional Hazards Model to assess the impact of 
various factors on patient survival?

 24. Consider a dataset with a large number of features, including both categori-
cal and numerical variables. How would you address the challenge of feature 
selection when building a survival analysis model? Discuss a scenario where 
feature selection using the Cox Proportional Hazards Model might be particu-
larly beneficial.

 25. Provide an example of how Random Survival Forest (RSF) could be 
employed in biomedical research to predict the risk of a specific health event.

 26. Imagine you have developed a survival analysis model for predicting patient 
outcomes. How would you interpret the Brier Score, AUC, and Concordance 
Index values to assess the model's performance?

Exercises

We used a dataset with 198 samples and 80 features for modeling breast cancer 
survival estimates, based on 76 gene signatures. In this exercise, we have a data-
set from a German breast cancer study group, having 686 samples and 8 features 
(gbsg2 dataset from sksurv.datasets). The endpoint is recurrence-free survival, 
which occurred for 299 patients (43.6%). This dataset is part of a study by the 
German Breast Cancer Study Group (GBSG) in 1984. This randomized clinical 
trial compared the effectiveness of different drug dosages on recurrence-free and 
overall survival.

Refer: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7390

Programming Hints

Programming Hint - breast cancer, gbsg2 dataset

from sksurv.datasets import load_gbsg2
X, Y = load_gbsg2()
X.info()

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7390


306 9 Survival Analysis

 0   age       686 non-null    float64 
 1   estrec    686 non-null    float64 
 2   horTh     686 non-null    categories -> ['no', 'yes']
 3   menostat  686 non-null    category -> ['Pre', 'Post']
 4   pnodes    686 non-null    float64 
 5   progrec   686 non-null    float64 
 6   tgrade    686 non-null    category -> ['I', 'II', 'III']
 7   tsize     686 non-null    float64 

Y.dtype         # 'cens', Boolean; 'time', float (survival in days)

Exercise 9.1 KM Survival Estimate—German Breast Cancer Study Group 2
Use the numeric features [‘age’, ‘estrec’, ‘pnodes’, ‘progrec’, ‘tsize’]. Compute 
the overall Kaplan–Meier survival estimate and plot it. Compute whether the esti-
mates differ across the category variables.

Exercise 9.2 Cox Proportional Hazard Model and HR
Model the survival time estimate, considering the influence of the features/covari-
ates. Compute the log hazard ratios (HR) and interpret them. Compute the bi-vari-
ate influence of features/covariates with survival and interpret them.

Exercise 9.3 Grid Search
Through a Grid Search of hyperparameters, identify a parsimonious survival 
model. Rank the features/covariates by their weights.

Exercise 9.4 Random Forrest
Build a random forest model. Plot the survival probability of select subjects.

Exercise 9.5 Random Forrest—Feature Selection
Build a random forest model. Identify the feature/covariates’ importance.

Exercise 9.6 ROC / AUC and Concordance Index
Plot the ROC curve and Concordance Index for the top variables, considering data 
censoring - for a specific period within the study. Interpret the results.

Exercise 9.7 Comparison of CPH and RFS Models
Do one-hot-encoding to transform categorical features. Impute missing values, if 
any. Build and Compare the estimators—Cox Proportional Hazards Model (CPH) 
and Random Forest Survival Analysis (RFS).

References

Ahuja K, Van der Schaar M (2019a) Joint concordance index. In: 53rd Asilomar conference on 
signals, systems, and computers, pp 2206–2213

Ahuja K, van der Schaar M (2019b) Joint concordance index. In: 53rd Asilomar conference on 
signals, systems, and computers, pp 2206–2213

Brentnall AR, Cuzick J (2018) Use of the concordance index for predictors of censored survival 
data. Stat Methods Med Res 27(8):2359–2373



307References

Ching T, Zhu X, Garmire LX (2018) Cox-nnet: an artificial neural network method for prognosis 
prediction of high-throughput omics data. PLoS Comput Biol 14(4). https://doi.org/10.1371/
journal.pcbi.1006076

David GK, Mitchel K (2012) Survival analysis: a self-learning text, 3rd edn. In Public Health, 
Springer

James G, Witten D, Hastie T, Tibshirani R (2021) An introduction to statistical learning with 
applications in R. Curr Med Chem (10). Springer

Kundu S, Chauhan K, Mandal D (2021) Survival analysis of patients with covid-19 in 
india by demographic factors: quantitative study. JMIR Format Res 5(5). https://doi.
org/10.2196/23251

Sundararajan S (2023) MVA-ML. https://github.com/sun-sri/MVA-ML

http://dx.doi.org/10.1371/journal.pcbi.1006076
http://dx.doi.org/10.1371/journal.pcbi.1006076
http://dx.doi.org/10.2196/23251
http://dx.doi.org/10.2196/23251
https://github.com/sun-sri/MVA-ML


309

Learning Objectives

• Explore frequent itemset mining, association rule mining, and market basket 
analysis, including the Apriori algorithm and other techniques for handling big 
data.

• Understand graph theory fundamentals, social network analysis, and commu-
nity detection algorithms with practical applications.

• Explain the principles of recommendation systems and apply them in practice.

Overview

This chapter introduces computational techniques for data analytics in two 
sections—market basket analysis and social network analysis. The first section 
explores frequent itemsets and market basket analysis (MBA). We discuss the 
Apriori algorithm and its use for identifying frequent itemsets and mining associ-
ation rules. We then look at typical applications of frequent itemsets mining, other 
algorithms, and improvements needed for handling big data. The Sect. 10.3 intro-
duces social network analysis. We discuss social network analysis algorithms for 
community detection and demonstrate using the Girvan-Newman and correlation 
clustering algorithms using two popular methods. In Sect. 10.4, we discuss the 
principles of recommendation systems.

Chapter 10
Computational Techniques

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_10

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_10.

https://doi.org/10.1007/978-981-99-0353-5_10#DOI
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_10&domain=pdf
http://dx.doi.org/10.1007/978-981-99-0353-5_10


310 10 Computational Techniques

Definitions

Apriori algorithm: a popular tool used for market basket analysis in retail analytics.
Apriori pruning principle: An association rule implies that if an itemset A occurs, 
then itemset B also occurs with a certain probability. Any subset of a frequent 
itemset must be frequent. Therefore, if an itemset is infrequent, its superset should 
not be generated—this is known as the Apriori pruning principle.
Computational Techniques: Data may be modeled based on the parameters of the 
underlying probability distribution. Where such an approximation (to an under-
lying probability distribution) is not possible, we use computational algorithms. 
Some of these algorithms may use certain statistical summarizations while remain-
ing predominantly nonstatistical.
Collaborative filtering: Collaborative filtering recommends an item based on (a) a 
user’s rankings of similar items or (b) the ratings of users with similar profiles who 
have rated the item in question. The former is item-item collaborative filtering, and 
the latter is user-user collaborative filtering.
Confidence: Confidence is a measure of the probability that the presence of 
Itemset A implies the presence of itemset B.
Content-based filtering: Content-based filtering recommends items with ‘charac-
teristic features’ similar to the ones a user has rated.
Frequent pattern growth algorithm: A popular tool used for market basket analysis 
in retail analytics.
Frequent patterns: Some patterns in data may occur repeatedly. Those patterns that 
have a high frequency of occurrence are called frequent patterns. The patterns can 
be substructures, sequences, or items.
Homophily: Homophily is the principle that individuals with similar traits are like-
lier to form ties.
Market basket analysis: Frequent itemset mining leads to discovering associations 
and correlations among items in large transactional datasets. Market basket anal-
ysis (MBA) is one such application. In this process, we analyze customer buying 
habits by finding associations and correlations between the items customers place 
in their ‘shopping baskets’.
Social network analysis: Graphs can model structures and capture the underlying 
relations/processing dynamics. One common application is social network analy-
sis, which is extensively used by marketers.
Social network graph: A social network structure can be represented as a graph. 
Here, the vertices are individuals or organizations, and the links are interdepend-
encies between the vertices, representing friendship, shared interests, or collabora-
tive activities. If there is a weightage associated with the relationship, that can be 
represented by labeling the edges with an appropriate number. These graphs can 
be directed or undirected.
Support: Support indicates the itemset frequency in a transaction dataset.



31110.2 Frequent Itemsets and Market Basket Analysis (MBA)

UV decomposition: One way to predict the missing ratings in a utility matrix is to 
find two matrices U and V, whose product approximates the given utility matrix. 
By doing so, we summarize and reduce the features to d dimensions that allow us 
to characterize users and items closely. Since the matrix product UV gives values 
for all user-item pairs, that value can be used to predict the value of a blank in the 
utility matrix.

10.1  Introduction to Computational Techniques

Data models may be classified into three categories using the techniques 
employed—statistical, computational, or machine learning. In statistical mode-
ling, the data is modeled and analyzed based on the parameters of the probabil-
ity distribution(s) underlying the data drawn. Where such an approximation (to an 
underlying probability distribution) is not possible, we use other computational 
algorithms. Some of these algorithms may use specific statistical summarizations 
while remaining predominantly nonstatistical. Machine learning is about learning 
from data, and it makes use of statistical and computational techniques.

Let us look at some of the common computational techniques. Google 
PageRank is a form of web mining where the complex structure of the web is sum-
marized by assigning a single number for each constituent page (Leskovec et al., 
2020). Frequent itemsets make use of the feature extraction approach. The popu-
lar market basket analysis (MBA) is a frequent itemsets application. Similar item-
sets are another feature extraction approach used in recommendation systems such 
as Amazon or Netflix for product recommendations. Clustering in high dimen-
sions demands special algorithms such as BFR, CURE, GRGPF, and BDMO. 
The graphs model numerous natural and human-made structures that capture the 
relations and processing dynamics. Graphs find applications in computer science, 
physical, biological, and social systems. A popular application is social network 
analysis. This chapter discusses market basket analysis, social network analysis, 
and recommendation systems.

10.2  Frequent Itemsets and Market Basket Analysis 
(MBA)

Data mining is about analyzing patterns and trends in data. Some patterns in 
data may occur repeatedly. Those patterns that have a high frequency of occur-
rence are called frequent patterns. The patterns can be substructures, sequences, or 
items. Here, we will look at one of the repeated patterns—frequent items.



312 10 Computational Techniques

Fig. 10.1  Market basket analysis

10.2.1  Frequent Itemsets

The weekly purchase of a family may include a set of items such as {bread, 
milk, yogurt, eggs, oats, cornflakes}, {onion, potato, spinach, cabbage, cauli-
flower, cucumber}, or {apple, banana, orange, grapes, pomegranate, pineapple}. 
A monthly purchase may include {wheat flour, rice, lentils, oil, pickles}. These 
are all examples of itemsets. If we check the customer baskets, we may find 
that certain sets of items are more frequently purchased than others. The set of 
items that appear most frequently is called a frequent itemset. Consider that we 
analyze the weekly purchases of all the customers in a retail store. We may find 
the following set of items to be frequent {bread, eggs, milk}, {onion, potato}, or 
{apple, banana}. See Fig. 10.1. A retailer may stock them on adjacent shelves for 
improved sales.

Frequent itemset mining leads to the discovery of associations and correlations 
among items in large transactional datasets and helps in business decision-making 
processes such as customer behavior analysis (Han & Micheline Kamber, 2014). 
A typical example of frequent itemset mining is market basket analysis (MBA). In 
this process, we analyze customer buying habits by finding associations and corre-
lations between the different items that customers place in their shopping baskets 
click or tap here to enter text. Frequent itemsets find applications in many domains 
other than retail. In telecom, each customer is associated with a set of call records 
between chosen destinations. Each debit/credit card account is associated with a 
set of payments in financial services. In medical practice, each patient is character-
ized by a set of diseases and treatments.



31310.2 Frequent Itemsets and Market Basket Analysis (MBA)

10.2.2  Association Rule Mining

An association rule implies that if an itemset A occurs, then itemset B also 
occurs with a certain probability. The association rule mining procedure (Han & 
Micheline Kamber, 2014) may be summarized as follows:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at 
least as frequently as the specified minimum support count.

2. Generate strong association rules from the frequent itemsets: These rules must 
satisfy minimum support and minimum confidence.

Let us examine some terms commonly used by business personnel in association 
rule mining, such as support, confidence, lift, the downward closure property, and 
the Apriori pruning principle.

Support

Support indicates the frequency of the itemset in a transaction dataset.
Let ‘I’ = {i1, i2, ..., in} be the set of all the items in a retail store. Let ‘t’ be a 

customer transaction that consists of a set of items such that t ⊆ I. Assume that 
the transaction database TDB consists of a set of all customer transactions ‘t’ in a 
given period.

Let A be a set of items, called itemset, which we want to investigate. For exam-
ple, A = {bread, eggs} may be a frequent 2-item itemset, or A = {bread, eggs, 
coffee} may be a frequent 3-item itemset.

• The frequency of the itemset A in transaction database TDB, termed as the sup-
port count of itemset A, can be expressed as follows:

The support count of itemset-A = SCA = n(A) 

• The probability that a randomly selected customer transaction ‘t’ may contain 
the set of items A can be expressed as follows:

The support of itemset-A SA = n(A)/n(D)
Note: An itemset A is frequent if A's support count is greater than or equal to 

the minimum support threshold set by the business.

Confidence

Confidence is the probability that the presence of Itemset A implies the presence 
of itemset B.

Confidence (A−> B)

= P(B/A)

= Support (A ∪ B)/Support (A)

= Support− Count (A ∪ B)/Support− Count (A)

= n (A ∪ B)/n(A)



314 10 Computational Techniques

Lift

The lift of a rule A ⇒ B is the ratio of observed support to the expected support 
if A and B were independent. A lift >1 implies a positive correlation between A 
and B; a lift <1 implies a negative correlation. This enhances the interestingness of 
frequent itemsets, over and above the confidence measure, as it computes the pos-
terior probability of confidence (A ⇒ B), given the presence of B. For example, 
consider retail sales. The seasonal hike in the sales of A and B will not influence 
Lift (A ⇒ B).

In other words, support (A) indicates the probability of itemset A occurring in a 
transaction, support (B) indicates the probability of itemset B occurring in a trans-
action, and support (A ∪ B) represents the probability of both itemsets A and B 
occurring together in a transaction. Lift (A ⇒ B) is Confidence (A ⇒ B) / Support 
(B).

The downward closure property and Apriori pruning principle

• The downward closure property of frequent patterns states that any subset of a 
frequent itemset must be frequent (Han & Micheline Kamber, 2014).

• The Apriori pruning principle states that if an itemset is infrequent, its superset 
should not be generated.

10.2.3  The Apriori Algorithm

The Apriori algorithm identifies the frequent itemsets from a transaction data-
base. The list of frequent itemsets can be used to mine the association rules (asso-
ciation of items). Apriori algorithm is shown below (Han & Micheline Kamber, 
2014):

• Assume that we have a transaction database TDB.
• Let Ck represent the candidate itemset of size k.
• Let Lk represent the frequent itemset of size k.
• Initially, scan TDB and prepare L1, the list of frequent single items.
• The algorithm iterates through the following three steps until Lk is empty.

1. Generate Ck+1 from Lk through join operation of Lk with Lk.
2. Inspect all the transactions t in TDB. If t contains one or more itemsets of 

Ck+1, increment the count of those itemsets in Ck+1.
3. Obtain Lk+1 by selecting itemsets with minimum support count in from 

Ck+1.
• Generate L, the list of all frequent itemsets of size 1 … k, by the union over all 

Lk.

Lift (A ⇒ B) = Support (A ∪ B)/
(

Support (A)∗Support (B)
)



315

Table 10.1  List of 
transactions

Transaction Items

1 Apple, Coffee, Sugar

2 Bread, Coffee, Eggs

3 Apple, Bread, Coffee, Eggs

4 Bread, Eggs

10.2 Frequent Itemsets and Market Basket Analysis (MBA)

The steps of the Apriori algorithm are described below, followed by an example.
Initially, we scan all the transactions in TDB and list all the items whose counts 

exceed the minimum support count. This gives a list of frequent 1-item itemset L1. 
Then we generate L1 join L1, the candidate itemset of two items each –> C2. For 
example, if L1 contains {A}, {B}, {C} then C2 will contain {A, B}, {A, C}, and 
{B, C}. We go through TDB, count the number of 2-item sets, and discard infre-
quent 2-item itemsets in C2. This will give a shorter list of 2-item itemsets that are 
frequent –> L2.

Let us continue the process for one more iteration. We generate L2 join L2, the 
candidate itemset of three items each –> C3. For example, if L2 contains {A, B} 
and {C, D}, then C3 will contain {A, B, C} and {A, B, D}, and so on. We then go 
through the TDB, count the number of occurrences of 3-item itemsets in TDB, and 
discard infrequent 3-item itemsets in C3. This gives a list of frequent 3-item item-
sets –> L3.

The above process is repeated till the emerging list Lk+1 is empty or we do not 
have any more frequent (k+1)-item itemsets that satisfy the support count require-
ment. Then all the frequent itemsets L1 … Lk are printed out.

10.2.4  Generation of Frequent Itemsets—An Example

Table 10.1 shows a database of transactions in a retail store. Generate frequent 
itemsets with a minimum support count of 2.

Initiation

Initially, scan the database of transactions TDB to get a list of items and their fre-
quency. Identify items with support of 2 and above. Table 10.2 shows that {D} 
occurs only once in TDB. However, the items {Apple, Bread, Coffee, Eggs} have 
support >=2. They are selected for the next iteration.

• L1 = {Apple, Bread, Coffee, Eggs}

Iteration-1

We get L1 = {Apple, Bread, Coffee, Eggs} from the previous step. Join L1 with 
itself and enumerate all 2-item itemsets. The candidate itemset C2 = L1 ⋈ L1 



316 10 Computational Techniques

Table 10.2  Identifying frequent 1-item itemsets

Itemset Support Itemset Support

{Apple} 2 {Apple} 2

{Bread} 3 [Bread} 3

{Coffee} 3 {Coffee} 3

{Sugar} 1

{Eggs} 3 {Eggs} 3

C1 (Candidate Itemset of Size 1) L1 (Frequent Itemsets of Size 1)

Table 10.3  Identifying frequent 2-item itemsets

Itemset Support Itemset Support

{Apple, Bread} 1

{Apple, Coffee} 2 {Apple, Coffee} 2

{Apple, Eggs} 1

{Bread, Coffee} 2 {Bread, Coffee} 2

{Bread, Eggs} 3 {Bread, Eggs} 3

{Coffee, Eggs} 2 {Coffee, Eggs} 2

C2 (Candidate Itemset of Size 2) L2 (Frequent Itemset of Size 2)

= [{Apple, Bread}, {Apple, Coffee}, {Apple, Eggs}, {Bread, Coffee}, {Bread, 
Eggs}, {Coffee, Eggs}].

Table 10.3 shows the frequency of the two-item itemsets (obtained by scan-
ning all the transactions in TDB). We can observe that the pair of items {Apple, 
Coffee}, {Bread, Coffee}, {Bread, Eggs}, and {Coffee, Eggs} occur two or more 
times in TDB. They have support >=2. They are selected for the next iteration.

Iteration 2: From the previous step, we get L2 = [{Apple, Coffee}, {Bread, 
Coffee}, {Bread, Eggs}, {Coffee, Eggs}].

Self Join

• Drop {Apple, Coffee}, as no other 2-item itemset start with the item Apple.
• {Bread, Coffee} and {Bread, Eggs} start with a common key Bread. Join them.
 L2 ⋈ L2
 -> {Bread, Coffee} ⋈ {Bread, Eggs}
 -> {Bread, Coffee, Eggs}
• Drop {Coffee, Eggs}, as no other itemsets start with the item Coffee.

Prune

• Immediate subsets of {Bread, Coffee, Eggs} are {Bread, Coffee}, {Bread, 
Eggs}, {Coffee, Eggs}.

• All these 3-item itemsets are in L2 (frequent itemsets of size 2).
• Therefore {Bread, Coffee, Eggs} is a candidate 3-item itemset of size 3. C3 = 

{Bread, Coffee, Eggs}.



317

Table 10.4  Identifying frequent 3-item itemsets

Itemset Support

{Bread, Coffee, Eggs} 2

10.2 Frequent Itemsets and Market Basket Analysis (MBA)

Scan TDB and Count
See Table 10.4. We find that {Bread, Coffee, Eggs} occur two times in TDB. 
Therefore, {Bread, Coffee, Eggs} is selected as a frequent 3-item itemset. L3 = 
{Bread, Coffee, Eggs}.

Termination of the algorithm

The algorithm terminates when there are no more frequent itemsets to generate. 
We are left with only one item in L3. No more joins are possible. Therefore, we 
terminate further iterations. The output (list of all frequent itemsets with minimum 
support of 2) is shown below:

1. Frequent 1-item itemsets: L1 = {Apple}, {Bread}, {Coffee}, {Eggs}
2. Frequent 2-item itemsets: L2 = {Apple, Coffee}, {Bread, Coffee}, {Bread, 

Eggs}, {Coffee, Eggs}
3. Frequent 3-item itemsets: L3 = {Bread, Coffee, Eggs}

10.2.5  Pruning—An Example with 3-item Itemset

Let L3 = {abc, abd, acd, ace, bcd} be a set of frequent itemsets of size 3. 
Identify candidate itemsets of size 4 (C4).

1. Self-join: L3 ⋈ L3

Pairs to be considered for joining:

{abc}, {abd}: can be joined since they have a common prefix {ab}
{abc}, {acd}: discard, since they do not have a 3-item common prefix
{abc}, {ace}: discard, since they do not have a 3-item common prefix
{abc}, {bcd}: discard, since they do not have a 3-item common prefix
{abd}, {acd}: discard, since they do not have a 3-item common prefix
{abd}, {ace}: discard, since they do not have a 3-item common prefix
{abd}, {bcd}: discard, since they do not have a 3-item common prefix
{acd}, {ace}: can be joined since they have a common prefix {ac}
{acd}, {bcd}: discard, since they do not have a 3-item common prefix
{ace}, {bcd}: discard, since they do not have a 3-item common prefix



318 10 Computational Techniques

Table 10.5  Identifying frequent itemsets

L1 (frequent itemsets of size 1) L2 (frequent itemsets of size 2) L3 (frequent itemsets of 
size 3)

Itemset Support Itemset Support Itemset Support

I1 6 I1, I2 4 I1, I2, I3 2

I2 7 I1 , I3 4 I1, I2, I5 2

I3 6 I1 , I5 2

I4 2 I2, I3 4

So we narrow down the following pairs:

{abc} and {abd} can be joined since the prefix ab is common to both sets
abc, abd -> abcd
{acd} and {ace} can be joined since the prefix ac is common to both sets
acd , ace -> acde

2. Pruning

Immediate subsets of {abcd} are: {abc}, {abd}, {acd}, {bcd}.
All the above subsets are in L3 (frequent itemsets of size 3). Therefore, 

{abcd} is a candidate for further processing.
Immediate subsets of {acde} are: {acd}, {ace}, {ade}, {cde}
{ade} is not in L3. Therefore, discard {acde}

3. Result: Candidate itemsets of size 4 (C4): {acde}

10.2.6  Association Rule Mining—An Example

Table 10.5 shows the frequency of itemsets mined from a transaction database 
TDB.

Consider the frequent itemset {I1, I2, I5}. Generate the association rules.

1. Enumerate the subsets: I1, I2, I5, {I1, I2}, {I1, I5}, {I2, I5}, {I1, I2, I5}.
2. Generate the frequent itemsets lists of sizes 1, 2, 3.
3. Generate the association rules, s => (l−s)
 I1 => {I2, I5}, I2 => {I1, I5}, I5 => {I1, I2}
 {I1, I2} => I5, {I1, I5} => I2, {I2, I5} => I1
 (see Table 10.5).
4. Enumerate the association rules. Get the support count from Table 10.5 and 

calculate the respective confidence.
 Confidence A ⇒ B= Support-Count (A U B)/Support-Count (A)
 Get the support counts from Table 10.5. The results are shown in Table 10.6.



319

Table 10.6  Enumerating association rules

AR for {I1, I2, I5} Confidence = SC (A U B)/SC (A) Confidence

{I1, I2} => I5 SC (I1,I2,I5) / SC (I1,I2) 2/4 = 50%

{I1, I5} => I2 SC (I1,I2,I5) / SC (I1,I5) 2/2 = 100%

{I2, I5} => I1 SC (I1,I2,I5) / SC (I2,I5) 2/2 = 100%

I1 => {I2, I5} SC (I1,I2,I5) / SC (I1) 2/6 = 33%

I2 => {I1, I5} SC (I1,I2,I5) / SC (I2) 2/7 = 29%

I5 => {I1, I2} SC (I1,I2,I5) / SC (I5) 2/2 = 100%

10.2 Frequent Itemsets and Market Basket Analysis (MBA)

Tutorial 10.2    Identifying Frequent Itemsets

Customer purchases in a fruit store are listed below. Identify frequent item-
sets satisfying minimum support of 0.3 
['Litchi', 'Banana', 'Plum'],
['Litchi', 'Grapes'],
['Grapes', 'Orange'],
['Litchi', 'Banana', 'Plum'],
['Pears', 'Plum'],
['Pears'],
['Pears', 'Grapes'],
['Litchi', 'Banana', 'Mango', 'Plum'],
['Mango', 'Orange'],
['Litchi', 'Banana']

Tutorial 10.2.1 Apriori Algorithm   

Install apyori package using the following python command
!pip install apyori. Refer: https://pypi.org/project/apyori/

import numpy as np
from apyori import apriori

TxnDB = [
['Litchi', 'Banana', 'Plum'],
['Litchi', 'Grapes'],
['Grapes', 'Orange'],
['Litchi', 'Banana', 'Plum'],
['Pears', 'Plum'],
['Pears'],
['Pears', 'Grapes'],
['Litchi', 'Banana', 'Mango', 'Plum'],
['Mango', 'Orange'],
['Litchi', 'Banana']
]
 

https://pypi.org/project/apyori/


320 10 Computational Techniques

Invoke Apriori algorithm, after setting minimum support threshold.  Let 
min_support be 0.3 (3 out of 10 transactions in TxnDB).

mba_results = list(apriori(TxnDB, min_support = 0.3))

Explore the result mba_results, for getting familiar with it
mba_results[0]
mba_results[0].support
mba_results[0].ordered_statistics
set(mba_results[0].ordered_statistics[0][1])

Print the results of the Apriori algorithm
nTxn = len(TxnDB)
for i in mba_results:
    MarketBasket = set(i.ordered_statistics[0][1])
    if (len(MarketBasket) > 0):
        print(
            MarketBasket,
            'support=', round(i.support,2), 
            'support count=', int(i.support*nTxn)
            )

Final Result:-
{'Banana'} support= 0.4 support count= 4
{'Grapes'} support= 0.3 support count= 3
{'Litchi'} support= 0.5 support count= 5
{'Pears'}  support= 0.3 support count= 3
{'Plum'}   support= 0.4 support count= 4

{'Litchi', 'Banana'} support= 0.4 support count= 4
{'Banana', 'Plum'}   support= 0.3 support count= 3
{'Litchi', 'Plum'}   support= 0.3 support count= 3

{'Litchi', 'Banana', 'Plum'} support= 0.3 support count= 3

Explanation:-

Round-1: 1-item  itemsets

{'Banana'} sup-count= 4 (>= minimum support count of 3) #select
{'Grapes'} sup-count= 3 (>= minimum support count of 3) #select
{'Litchi'} sup-count= 5 (>= minimum support count of 3) #select
{'Mango'}  sup-count= 2 (less than min.supp.count of 3) #discard
{'Orange'} sup-count= 2 (less than min.supp.count of 3) #discard
{'Pears'}  sup-count= 3 (>= minimum support count of 3) #select
{'Plum'}   sup-count= 4 (>= minimum support count of 3) #select

Round-2: 3-item itemsets

{'Banana', 'Litchi'} sup-count= 4 (>= minimum support count of 3) #select
{'Banana', 'Mango'}  sup-count= (less than min.supp.count of 3)   #discard
{'Plum', 'Banana'}   sup-count= 3 (>= minimum support count of 3) #select
{'Grapes', 'Litchi'} sup-count= (less than min.supp.count of 3)   #discard



32110.2 Frequent Itemsets and Market Basket Analysis (MBA)

{'Orange', 'Grapes'} sup-count= (less than min.supp.count of 3)   #discard
{'Pears', 'Grapes'}  sup-count= (less than min.supp.count of 3)   #discard 
{'Litchi', 'Mango'}  sup-count= (less than min.supp.count of 3)   #discard
{'Plum', 'Litchi'}   sup-count= 3 (>= minimum support count of 3) #select
{'Orange', 'Mango'}  sup-count= 1 (less than min.supp.count of 3) #discard
{'Plum', 'Mango'}    sup-count= 1 (less than min.supp.count of 3) #discard
{'Pears', 'Plum'}    sup-count= 1 (less than min.supp.count of 3) #discard

Round 3: 3-items itemsets

{'Litchi','Banana','Mango'} sup-count=1(<min.supp.countof3)     #discard
{'Plum','Banana','Litchi'}  sup-count=3(>=min.supp.countof3)    #select
{'Plum','Banana','Mango'}   sup-count=1(<min.supp.countof3)     #discard
{'Plum','Litchi','Mango'}   sup-count=1(<min.supp.countof3)     #discard
{'Mango','Plum','Banana','Litchi'} sup-count=1(<min.supp.count3) #discard

Tutorial 10.2.2 Association Rule Mining

Perform association rule mining satisfying minimum support of 0.3

Importing the libraries
import numpy as np
from apyori import apriori

TxnDB = [
['Litchi', 'Banana', 'Plum'],
['Litchi', 'Grapes'],
['Grapes', 'Orange'],
['Litchi', 'Banana', 'Plum'],
['Pears', 'Plum'],
['Pears'],
['Pears', 'Grapes'],
['Litchi', 'Banana', 'Mango', 'Plum'],
['Mango', 'Orange'],
['Litchi', 'Banana']
]

Set the minimum support threshold: minimum support = 0.3 (3 out of 10 transac-
tions in TxnDB). Invoke the Apriori algorithm, to get all frequent itemsets

mba = apriori(TxnDB,min_support =0.3)
mba_results = list(mba)   

Explore the result mba_results, for getting familiar with it
mba_results[0]
mba_results[0].support
mba_results[0].ordered_statistics
set(mba_results[0].ordered_statistics[0][1])



322 10 Computational Techniques

Print the results of Association Rule Mining
for i in mba_results:
    MarketBasket = set(i.ordered_statistics[0][1])

For all frequent itemsets, print the support
    if (len(MarketBasket) > 0):
        print('\nItemset ', MarketBasket, 'support=', i.support)

if the number of items in the frequent itemset > 1, list all the association 
rules underlying the selected itemset. Print the corresponding confidence, 
and lift

    if (len(MarketBasket) > 1):
        print('Association Rules for the Itemset:-')
        rule_set=list(i.ordered_statistics)
        for r in rule_set:
            if r[3] > 1:
                print(set(r[0]), '->', set(r[1]),
                      ' confidence:', round(r[2],2),
                      ' lift:', round(r[3],2))

Final Result:-
Itemset  {'Banana'} support= 0.4
Itemset  {'Grapes'} support= 0.3
Itemset  {'Litchi'} support= 0.5
Itemset  {'Pears'} support= 0.3
Itemset  {'Plum'} support= 0.4

Itemset  {'Litchi', 'Banana'} support= 0.4
Association Rules for the Itemset:-
{'Banana'} -> {'Litchi'}  confidence: 1.0  lift: 2.0
{'Litchi'} -> {'Banana'}  confidence: 0.8  lift: 2.0

Itemset  {'Banana', 'Plum'} support= 0.3
Association Rules for the Itemset:-
{'Banana'} -> {'Plum'}  confidence: 0.75  lift: 1.87
{'Plum'} -> {'Banana'}  confidence: 0.75  lift: 1.87

Itemset  {'Litchi', 'Plum'} support= 0.3
Association Rules for the Itemset:-
{'Litchi'} -> {'Plum'}  confidence: 0.6  lift: 1.5
{'Plum'} -> {'Litchi'}  confidence: 0.75  lift: 1.5

Itemset  {'Litchi', 'Banana', 'Plum'} support= 0.3
Association Rules for the Itemset:-
{'Banana'} -> {'Litchi', 'Plum'}  confidence: 0.75  lift: 2.5
{'Litchi'} -> {'Banana', 'Plum'}  confidence: 0.6  lift: 2.0
{'Plum'} -> {'Litchi', 'Banana'}  confidence: 0.75  lift: 1.87
{'Litchi', 'Banana'} -> {'Plum'}  confidence: 0.75  lift: 1.87
{'Banana', 'Plum'} -> {'Litchi'}  confidence: 1.0  lift: 2.0
{'Litchi', 'Plum'} -> {'Banana'}  confidence: 1.0  lift: 2.5



32310.3 Social Network Analysis

10.2.7  Algorithms Used in Market Bask Analysis

The Apriori algorithm is a popular tool used for market basket analysis in 
retail analytics. MBA may be used for (a) identifying products that may be pur-
chased together and placing them nearby, in a physical store, website, or catalog to 
encourage the customer to buy related items; (b) cross-sell, up-sell, and bundling 
opportunities, so that customers may buy more items when certain products are 
bundled together; and (c) customer retention through promotions based on buying 
behavior, among other things.

Like the Apriori algorithm, the frequent pattern growth algorithm also offers an 
efficient approach to extracting association rules from the large datasets of trans-
action logs. These algorithms are now commonly applied in clickstream analysis, 
cross-selling recommendation engines, information security, bioinformatics, etc.

When it comes to processing large datasets, Apriori algorithms need large 
memory and processing time (Leskovec et al., 2020). The PCY (Park-Chen-Yu) 
algorithm improves on Apriori by creating hash tables on the first pass, hashing 
pairs of items, and identifying the frequent item pairs. The multistage algorithm 
improves it further by including additional passes between the first and second 
pass of the PCY algorithm to hash pairs. The multi-hash algorithm modifies the 
first pass of the PCY algorithm by creating several hash tables. Toivonen’s algo-
rithm is another improvement over PCY. The primary focus of Toivonen's algo-
rithm is to reduce memory requirements by working with random data samples 
rather than the entire dataset. The algorithm works in two phases. In the first 
phase, a random sample of the transactions is taken, and frequent itemsets are dis-
covered. Based on the frequent itemsets found in the sample, the algorithm gen-
erates candidate itemsets for the entire dataset. In the second phase, the algorithm 
verifies the generated candidates against the entire dataset to ensure no frequent 
itemsets are missed during the sampling phase.

Randomized algorithms choose a random sample of the baskets with a sample 
size that fits the main memory. The SON algorithm improves this by allocating 
multiple segments for the baskets so that all frequent itemsets for each segment 
can be found in the main memory. The decaying window technique is used for 
counting Frequent Itemsets in Streams (like the one IMDB uses for movie rating).

10.3  Social Network Analysis

Social media is a major channel used extensively by marketers and other 
researchers. This section provides an overview of social network analysis, which is 
an integral part of social media analysis, and illustrates some algorithms for com-
munity detection.



324 10 Computational Techniques

10.3.1  Social Networks—Introduction and Overview

A collection of entities, typically people or organizations, participate in a social 
network. There are various categories of networks, such as friendship networks 
(Facebook), follower networks (Twitter, LinkedIn), preference similarity networks 
(Instagram), interaction networks (emails, WhatsApp), and co-authorship net-
works (Wikibooks).

A network structure can be represented as a graph. Here, the vertices are indi-
viduals or organizations, and the links are interdependencies between the vertices, 
representing friendship, common interests, or collaborative activities. If there is a 
weightage associated with the relationship, that can be represented by labeling the 
edges with an appropriate number. These graphs can be directed or undirected. For 
example, friendship network graphs of Facebook users are undirected. On Twitter, 
a person ‘A’ may follow another person ‘B’, but ‘B’ may not follow ‘A’. This 
exemplifies a unidirectional (or 'directed') relationship.

Common categories of measurements in network analysis include the following 
(Al-Taie, 2017):

• Network connection includes transitivity, multiplexity, homophily, mutuality, 
and reciprocity.

• Network distribution includes the distance between nodes, degree, centrality, 
geodesic distance, and density.

• Network segmentation, which includes cohesive subgroups, cliques, cluster-
ing coefficients, k-cores, and block models.

A network graph can be very sophisticated, involving features such as edge 
weights/probabilities, and directed/undirected graphs. A graph can have mul-
tiple vertices, which results in high dimensionality. A large graph can be sparse. 
All these scenarios may necessitate non-exhaustive and non-exact solutions. The 
distance measures used in common cluster analysis include Euclidean distance, 
Jaccard distance, cosine distance, etc. However, in social networks, we use dif-
ferent measurements such as the degree of a node, the betweenness of an edge, 
the closeness of a node, network connection, network distribution, and network 
segmentation. It follows that the common clustering techniques that we learned 
earlier cannot be applied as such for clustering social network graphs.

10.3.2  Basics of Graph Theory

A graph is a data structure that helps specify objects and their relationship. A 
graph consists of a finite set of nodes (or vertices) and edges. The edges are sets 
of pairs of nodes. Graphs may be broadly classified as follows. See Fig. 10.2 for a 
pictorial representation.

• Complete graphs contain edges between all pairs of nodes.
• Signed graphs contain edges with either a positive or a negative sign.



325

Fig. 10.2  Types of graphs

Edges
A
B

A
C

B
C

C
D

D
E

D
F

F
G

A 1 1
B 1 1
C 1 1 1
D 1 1 1
E 1
F 1 1
G 1

A B C D E F G
A 0 1 1 0 0 0 0
B 1 0 1 0 0 0 0
C 1 1 0 1 0 0 0
D 0 0 1 0 1 1 0
E 0 0 0 1 0 0 0
F 0 0 0 1 0 0 1
G 0 0 0 0 0 1 0

Fig. 10.3  Graph, incidence matrix, adjacency matrix

10.3 Social Network Analysis

• Directed graphs contain edges that have a specified direction. Edge e (u, v) indi-
cates that the direction is from u to v. Edge e (u, v) is not the same as e (v, u).

• Weighted graphs contain weights on the edges.

In this chapter, we will do computations with complete signed graphs that are 
undirected and unweighted.

How do we represent a graph for computations? There are many ways. Let us 
look at some possibilities here—adjacency list, adjacency matrix (see Fig. 10.3), 
and incidence matrix (see Fig. 10.3). An adjacency list is a collection of unor-
dered lists representing a finite graph. Each unordered list within an adjacency 
list describes the set of neighbors of a particular vertex in the graph. Though the 
space required is less, the access time for an element is high. An adjacency matrix 
is a two-dimensional matrix in which the rows represent source vertices, and the 
columns represent destination vertices. The incidence matrix is a two-dimensional 
matrix in which the rows represent the vertices, and the columns represent the 
edges. The entries indicate the incidence relation between the vertex at a row and 
the edge at a column.



326 10 Computational Techniques

10.3.3  Understanding NetworkX Package

NetworkX is a Python library designed to build, manipulate, and analyze a 
complex networks' structure, dynamics, and functions. In NetworkX, nodes can 
be any hashable object, such as a text string, an image, an XML object, another 
graph, a customized node object, and more. Let us delve into NetworkX through 
various tutorials.

Tutorial 10.3.1    NetworkX Graph Examples 

Import NetworkX Python package. Refer: https://networkx.org/
import networkx as nx

Create an empty graph with no nodes and no edges.
G = nx.Graph()

Build a std Graph from the library - petersen_graph
G = nx.petersen_graph()

Draw Graph - Figure 10-4 
nx.draw(G, with_labels=True, font_weight='bold') 
nx.draw_shell(G, nlist=[range(5, 10), range(5)], 
              with_labels=True, font_weight='bold')

Getting Familiar with NetworkX Commands: 
import matplotlib.pyplot as plt
import networkx as nx

Build a std Graph from the library - karate_club_graph
G = nx.karate_club_graph()
nx.density(G)   # 0.139
nx.info(G)      # 34 nodes and 78 edges
G.nodes()

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33))

Find the node with the maximum degree 
n = len(G.nodes())
for i in range(n):
    deg = nx.degree(G,i)
    if (maxDeg < deg):
        maxDeg = deg
        nn = i
    print(i, nx.degree(G,i))
print('node number', nn, 'has the maximum degree', maxDeg)
The node number 33 has a maximum degree 17

https://networkx.org/


327

Fig. 10.4  NetworkX graph examples

10.3 Social Network Analysis

Plot the histogram of the degree of nodes
plt.plot(nx.degree_histogram(G))
plt.xticks(range(0,19,2))
plt.ylabel('frequency',fontsize=14)
plt.xlabel('degree of node',fontsize=14)

See Figure 10-5: Histogram of Degree of Nodes
G._adj          # Adjacency Matrix

Commonly used NetworkX functions are listed below (networkx, 2023). The 
tutorials help to better understand some of these NetworkX functions (Fig. 10.4).

• degree(G[, nbunch, weight]): A view of the degree for a single node or a set of 
nodes in the graph.

• degree_histogram(G): Generates a list detailing the frequency of each degree 
value in the graph.

• density(G): Computes and returns the density of the graph.
• info(G[, n]): Furnishes a summary of information for either the entire graph G 

or a specific node \(n\).
• is_empty(G): Returns a Boolean value indicating whether the graph G has no 

edges.
• number_of_nodes(G): Determines and returns the count of nodes present in the 

graph.
• neighbors(G, n): Supplies a list of nodes connected to the specified node \(n\) 

in the graph.
• common_neighbors(G, u, v): Identifies and returns the common neighbors of 

two nodes u and v in the graph.
• number_of_edges(G): Provides the count of edges in the graph G.
• density(G): Computes and returns the density of the graph.
• is_weighted(G[, edge, weight]): Returns a Boolean value indicating whether 

the graph G has weighted edges.
• is_negatively_weighted(G[, edge, weight]): Determines whether the graph G 

has negatively weighted edges and returns a Boolean value accordingly.



328 10 Computational Techniques

Fig. 10.5  Histogram of 
degree of nodes

• is_path(G, path): Checks and returns a Boolean value indicating the existence 
of the specified path in the graph.

• path_weight(G, path, weight): Calculates and returns the total cost associated 
with the specified path, considering the specified weight (Fig. 10.5).

10.3.4  Analysis of Social Networks

Social media provides opportunities for billions of individuals around the globe 
to interact, share, post, and participate in numerous activities. Social media ena-
bles connectivity and interaction anytime and anywhere. This allows a marketing 
researcher to observe human sentiments and behavior closely and unobtrusively, at 
a scale and magnitude unheard of in traditional marketing (Zafarani et al., 2014). 
Social network analysis helps to understand the entities, their relationships, and 
their behavior in social networks. Homophily is the tendency of similar individuals 
to get connected. Influence is the process by which an individual affects another 
individual. Confounding is the environment's effect on making individuals similar. 
The similarity in social networks is based on many factors—sociology, economics, 
culture, geography, interests, activities, behavior, etc.

A major task in social network analysis is community detection. This section 
aims to familiarize oneself with community detection algorithms and discuss/
demonstrate two algorithms for the same.

In social networks, individuals (nodes) typically participate in multiple com-
munities, posing a challenge for conventional clustering algorithms in commu-
nity detection. A practical approach to segregate nodes into communities involves 
assessing the betweenness of edges, a concept integral to the Girvan-Newman 
algorithm. Complete bipartite graphs consist of two sets of nodes with all potential 
edges connecting nodes from different sets. Detecting complete bipartite graphs 
utilizes techniques like those used for identifying frequent itemsets.

Another method for community identification involves iteratively partitioning 
a graph into segments of approximately equal sizes. Spectral methods leverage 



329

Fig. 10.6  Betweenness of edges—an example

10.3 Social Network Analysis

the eigenvalues of a matrix linked to the graph to achieve an optimal partition. 
In social networks, friendship between two individuals may be inferred by their 
shared membership in multiple communities. Given knowledge of community 
memberships, maximum likelihood estimates (MLE) can be derived using tech-
niques like gradient descent. The strength of membership in communities offers 
enhanced insights into individuals' friendships.

Outlined below are three prevalent methods for community detection in social 
networks.

• Girvan-Newman algorithm: The Girvan-Newman algorithm detects communi-
ties by progressively removing edges that have the highest betweenness from 
the original network.

• Correlation clustering algorithm: Correlation clustering aims to cluster items 
based on item similarity. The objective could be to minimize the number of dis-
agreements (popular method) or to maximize the number of agreements.

• Building bipartite graphs: A complete bipartite graph consists of two distinct 
groups of nodes, with edges connecting every possible pair of nodes, each 
chosen from a different group. No edges exist between nodes within the same 
group. Identifying complete bipartite graphs from a node set involves employ-
ing the methodology for discovering frequent itemsets. In this context, a node's 
corresponding basket is considered the set of its adjacent nodes, akin to items. 
Viewing a complete bipartite graph with node groups of sizes t and s can be con-
ceptualized as identifying frequent itemsets of size t with specified support levels.

10.3.5  The Betweenness of Edges

One way to separate nodes into communities is to measure the betweenness of 
edges. Let us assume a simple case—an undirected unweighted graph G. Assume a 
total of P shortest paths, considering all possible pairs of nodes from {a1 ... an} of 
graph G. Assume that ‘p' is the number of shortest paths that go through a given pair of 
nodes {ai, aj}. The betweenness of the edge {ai, aj} can be indicated as the fraction p/P.

Figure 10.6a illustrates the connectivity of the members of a community.  
Table 10.7a shows the shortest path between each pair of nodes. Note that there 



330 10 Computational Techniques

Table 10.7  Betweenness of edges—an example

(a) Shortest path between each pair (b) Betweenness of each edge

From node To node Shortest path Edge p P Betweenness 
= p/P

1 A B AB AB 1 21 0.05

2 A C AC AC 5 21 0.24

3 A D ACD BC 5 21 0.24

4 A E ACDE CD 12 21 0.57

5 A F ACDF DE 4 21 0.19

6 A G ACDFG DF 10 21 0.48

7 B C BC FG 6 21 0.28

8 B D BCD

9 B E BCDE

10 B F BCDF

11 B G BCDFG

12 C D CD

13 C E CDE

14 C F CDF

15 C G CDFG

16 D E DE

17 D F DF

18 D G DFG

19 E F EDF

20 E G EDFG

21 F G FG

are 21 shortest paths (P = 21). Table 10.7b shows the betweenness of each edge, 
computed according to the formula mentioned above (p/P). For example, the edge 
AC is between five shortest paths, as shown in Table 10.7a. They are AC, ACD, 
ACDE, ACDF, and ACDFG. Therefore (p = 5).

So, the betweenness of the edge AC is = p/P = 5/21 = 0.24
The edge CD has the highest betweenness of 0.57. Therefore, it is removed, 

generating two clusters, as shown in Fig. 10.6b.
The above process is repeated with individual clusters until we arrive at the 

optimal number of clusters.

10.3.6  Community Detection: Girvan-Newman Algorithm

The Girvan-Newman algorithm (Girvan & Newman, 2002) provides an effi-
cient technique for computing the betweenness of edges using a breadth-first 
search. Then the edges with the highest betweenness are removed, one by one. The 
network breaks down into smaller pieces or communities (Fig. 10.7).



331

Fig. 10.7  Girvan-Newman algorithm

10.3 Social Network Analysis

Tutorial 10.3.2 Community Detection Tutorial – Girvan Newman Algorithm

import networkx as nx
from networkx.algorithms.community.centrality import girvan_newman
import matplotlib.pyplot as plt

Build a std Graph from the library - karate_club_graph
kClubGraph = nx.karate_club_graph()

Girvan_newman algorithm for identifying clusters
community_structure = girvan_newman(kClubGraph)
clusters = []
for cluster in next(community_structure):
    clusters.append(list(cluster))
    color_map = []

Draw the Original Graph - Figure 10-7 (a) 
nx.draw(kClubGraph, node_color=color_map, with_labels=True, font_size=16)
plt.show()

Mark the Community Clusters 
color_map = []
for node in kClubGraph:
    if node in clusters[0]:
        color_map.append('cyan')
    else: 
        color_map.append('orange')  

Show the Clusters that Emerged - Figure 10-7 (b) 
nx.draw(kClubGraph, node_color=color_map, with_labels=True, font_size=16)

plt.show()



332 10 Computational Techniques

Fig. 10.8  West Virginia 
student fraternity community

10.3.7  Community Detection: Correlation Clustering

Correlation clustering aims to cluster items based on the similarity between 
items. The objective could be to minimize the number of disagreements (popular 
method) or to maximize the number of agreements.

Correlation clustering (CC) uses network-graph-based solutions. Given a graph 
with n vertices, each edge u-v is labeled ‘+’ (nodes u, v are similar) or ‘−' (nodes 
u, v are dissimilar). A partition of the nodes is produced to agree as much as pos-
sible with the edge labels. The intention is to maximize the number of ‘+' edges 
within clusters and the number of ‘-' edges across clusters. Unlike other clustering 
algorithms such as k-means and k-median, the number of clusters in correlation 
clustering need not be specified beforehand. This could also be extended to real-
life scenarios where we deploy a similarity metric to identify similar and dissimi-
lar entities in a dataset and group them accordingly. We will discuss the CC-Pivot 
correlation clustering algorithm proposed by Ailon et al. (2008) and demonstrate it 
through a tutorial.

CC-Pivot Algorithm

1. Pick a random node in graph G.
2. Form a cluster with all the nodes with which it has ‘+’ edges.
3. Remove the above cluster from graph G to form G’.
4. Repeat steps 1 to 3 for G’ until no more positive edges remain.

CC-Pivot—Example

In the following tutorial, we analyze the closeness of a student fraternity in West 
Virginia. The cell values indicate the number of times they interacted over a week. 
We intend to form different groupings of the students for various New Year's par-
ties. We expect the parties to be organized such that the students are most known 
to each other (Figs. 10.8 and 10.9).



333

Fig. 10.9  West Virginia student fraternity-clustering

10.3 Social Network Analysis

Tutorial 10.3.3    Community Detection - West Virginia Student Fraternity

Data Setup
import pandas as pd

Download the file from GitHub; Refer {(Sundararajan, 2023)} for Data File
d=pd.read_csv('WV-fraternity.csv')
d.shape         # (116, 58)
dataset = d.iloc[0:58]
dataset.shape   # (58, 58)

We take the mean of all values in the matrix. 
mean = dataset.mean().mean()   # 1.892

Tutorial 10.3.3.1 Building a Graph Showing Student Connectivity
 

Build a graph with 58 nodes representing students
import networkx as nx
G=nx.Graph()            # Create an empty graph       
for i in range(58):     # Create 58 nodes, each node indicates one 
student
    G.add_node(i)

Check each cell of the dataset with 58x58 cells. Values greater than the mean 
indicate friendship between students. if the cell value > mean, add an edge 
connecting the nodes represented 

friendship_threshold = 2
for i in range(len(dataset)):
    for j in range(len(dataset)):
        if dataset.iloc[i][j] >= friendship_threshold:
            G.add_edge(i,j)
G.number_of_edges() # 596 edges are there in the graph.

Draw the graph 
nx.draw(G, with_labels=True, font_weight='bold', font_size=10,
        font_color='w',
        node_size=1024)

See Figure 10-8: West Virginia Student Fraternity Community
There can be 58x58 = 3364 possible edges. Off these, we form 596 edges, which 
have a strength of connection >=mean 



334 10 Computational Techniques

Tutorial 10.3.3.2 CC-Pivot Clustering Algorithm

Now, we use a simple clustering algorithm on this dataset (algorithm by Ailon 
and Charikar). We pick random nodes and build clusters around their neigh-
bours in sequential order

import random
class charikar:
    def __init__(self,G):
        self.clusters = []
        self.G = G
    def ccpivot(self):
        " Treats existing edge as '+' and non-existing edge as '-' "
        while len(self.G.nodes())>0:
            # Randomly picks a node as the pivot
            vs = random.sample(self.G.nodes(),1)
            v  = vs[0]

Obtain the cluster from its set of positive neighbors
            Av = [v]

Note: neighbors() returns a list of nodes connected to node n.
            for u in self.G.neighbors(v):
                Av.append(u)
            self.clusters.append(Av)
            # Remove this cluster from the graph
            self.G.remove_nodes_from(Av)
            # the loop now iterates on v'
        return self.clusters

To return the cluster number of each node
def clusterise(cluster):
    clusternumber={}
    c=0
    for i in cluster:
        c=c+1
        for v in i:
            clusternumber[v]=c
    return clusternumber

Tutorial 10.3.3.3 Clustering Nodes using the CC-Pivot Algorithm

The clusters that emerge indicate the party group to which a particular stu-
dent could be assigned to, based on his/her links

T=G.copy()
Random seed helps in the reproducibility of results on repeated trials

random.seed(0)
test=charikar(T)
c=test.ccpivot()

Check the number of clusters that emerge  
print(len(test.clusters))   # ~ 7



33510.3 Social Network Analysis

Clustering All the Nodes with 1 Or 2 Edges Only. Remove nodes having one / 
two edges only and form a cluster of them

clusters = test.clusters.copy()
to_be_added=[]
for i in clusters: 
    if len(i)>2:
        pass
    else :
        print(i)
        for j in i:
            to_be_added.append(j)
        test.clusters.remove(i)
test.clusters.append(to_be_added)

Tutorial 10.3.3.4 Performance Metrics

TP=0
FP=0
TN=0
FN=0

clusternumber is a list which stores the cluster number of each node
clusternumber=clusterise(test.clusters)
for n in G.nodes():
    for v in G.nodes():
        if v!=n:

neighbors(): Returns a list of nodes connected to node n.
            if v in G.neighbors(n):
                if clusternumber[n]==clusternumber[v]:
                    TP=TP+1
                else :
                    FN=FN+1
            else:
                if clusternumber[n]==clusternumber[v]:
                    FP=FP+1
                else:
                    TN=TN+1
                   

Print the accuracy of the model. 
Accuracy=(TP+TN)/(TP+TN+FP+FN)
print('Accuracy of the model= ',Accuracy) #  0.70

Plot the Clusters for Visual Understanding
import numpy as np
cp =['b','g','r','c','m','y','b']
ClusterLabel = list(np.arange(0,58))
nNum   = list(np.arange(0,58))



336 10 Computational Techniques

Table 10.8  Content-based recommendation

Feature Samsung M13 Realme 50A Nokia G21 Redmi Note 11

Screen size 6.6 6.6 6.5 6.43

Screen type LCD LCD TFT Amoled

RAM in GB 6 4 6 6

Storage in GB 128 64 128 128

Weight (g) 207 193 191 179

Price (₹) 13,000 11,500 13,300 15,000

User rating 7 6 8 9

for i in nNum: ClusterLabel[i] = clusternumber[i] 
nx.draw(G, with_labels=True, 
        font_weight='bold', font_color='w', font_size=10, 
        node_color = ClusterLabel, node_size=1024)

See Figure 10-9: West Virginia Student Fraternity - Clustering

ClusterLabel 
Cluster Labels for Nodes 0..57, in order
[7, 3, 1, 1, 4, 1, 1, 4, 1, 6, 1, 5, 3, 1, 1, 1, 1, 1, 5, 1, 1, 3, 2, 7, 
3, 7, 1, 7, 4, 7, 5, 7, 6, 1, 1, 1, 2, 2, 1, 6, 5, 7, 7, 4, 4, 7, 2, 3, 1, 
5, 2, 7, 2, 1, 1, 1, 1, 5]

10.4  Recommendation Systems

The limitation of shelf space prohibits a physical retailer from storing all types 
of products in a shop. While the fast-moving ones can be displayed, the others go 
to oblivion. Online shopping websites are free of this limitation as they can main-
tain an online catalog of a vast number of items and their features.

Websites offer recommendations for items such as movies, books, products, 
services, or content based on personal preferences. These websites build a per-
sonal profile based on our earlier ratings, purchases, website behavior, etc.; or 
based on the interests shown by people of similar profiles. They use recommenda-
tion systems to help users discover new, old, popular, or esoteric content, products, 
services, etc. There are two primary types of recommendation systems—collabo-
rative filtering and content-based filtering.

10.4.1  Content-Based Recommendation

Content-based filtering recommends items with ‘characteristic features’ similar 
to the ones a user has rated. See Table 10.8. You can make recommendations even 
if no other users have rated the items. However, there is a tendency to recommend 



337

Table 10.9  Utility matrix y (user-item)

Legend: Kung Fu Panda: KP; The Exorcist: Ex; Item-Item and User-User Ra�ng

KP-1 KP-2 KP-3 KP-4 EX-1 EX-2 Omen-
1

Omen-
2

Schindler's 
List

Forrest 
Gump

User1 7.6 8.1 3.8 ?

User2 6.0 7.2 7.1 ? 8.0

User3 8.0 7.5 6.2 9.2

User4 7.5 9.0 8.8

10.4 Recommendation Systems

only items similar to those the user under consideration has already rated. This 
results in a lack of diversity and novelty in recommendations. Moreover, con-
tent-based recommendation systems rely on the capture of relevant features of 
items, which is challenging.

Table 10.8 shows that the scales differ for each feature. The features must be 
scaled to a single scale before computation using min-max standardization (x−µ)/
range, z-score standardization (x−μ)/σ, etc. This is to avoid bias by the features 
having a larger range of values and to truly represent the features' variations.

10.4.2  Collaborative Filtering

Collaborative filtering recommends an item based on (a) a user’s ratings (actually, 
rankings) of similar items that the user has rated or (b) the ratings of users with 
similar profiles who have rated the item in question (Leskovec et al., 2020). The 
former is known as item-item collaborative filtering and later as user-user collabo-
rative filtering.

Collaborative filtering algorithms use a user-item matrix representing the 
user’s ratings of items (e.g., movies, news, products, etc.). See Table 10.9. This 
utility matrix can be used to identify similarities between users and items. Based 
on this information, an algorithm can then make personalized recommendations 
for specific users. These matrices are typically sparse because users might not be 
aware of the vast majority of items, and even if they are aware, they might have 
rated only a few. If a user rated similar items, item-item collaborative filtering is 
more effective and easier to implement compared to user-user collaborative filter-
ing algorithms. It is also computationally efficient as the similarity matrix can be 
pre-computed and stored for quick lookup.

Collaborative filtering can be formulated as a machine learning problem relying 
on iterative optimization. The predicted rating by User X, denoted as Rx, is a func-
tion of the utility (User × Item):

Predicted Rating by User X = Rx = f [Utility (User × Item)]
Assume,
G-Mean = mean global rating of the item,



338 10 Computational Techniques

Table 10.10  User-user collaborative filtering—data preprocessing
 (a) Find row mean (user-wise average rating)

KP-1 KP-2 KP-3 KP-4 EX-1 EX-2
Omen-

1
Omen-2

Schindler's 
List

Forrest 
Gump

Mean

User1 7.6 8.1 3.8 6.5

User2 6 7.2 7.1 9 8 7.46

User3 8 8 7.5 6.2 9.2 7.64

User4 7.5 8 9 8.8 8.325

  (b) Center (X-µ)

KP-1 KP-2 KP-3 KP-4 EX-1 EX-2
Omen-

1
Omen-

2
Schindler's 

List
Forrest 
Gump

Row 
Sum

User1 1.1 1.6 -2.7 0

User2 -1.46
-

0.26
-

0.36 1.54 0.54 0

User3 0.36 0.36 -0.14 -1.44 0.86 0

User4
-

0.825
-

0.325
0.675 0.475 0

 (c) Impute missing values with new row mean (zero)

KP-1 KP-2 KP-3 KP-4 EX-1 EX-2 Omen-1 Omen-2 Schindler's List Forrest Gump

User1 1.1 0 0 0 1.6 -2.7 0 0 0 0

User2 -1.46 -0.26 -0.36 0 1.54 0 0 0 0.54 0

User3 0.36 0 0 0 0.36 0 -0.14 -1.44 0.86 0

User4 -0.825 0 0 0 -0.325 0 0 0 0.675 0.475

U-Mean-Diff = difference of user X’s mean rating from the global mean con-
cerning items of similar category.

Weighted Average of K Nearest Neighbor’s Ratings =

The general formula for collaborative filtering can be expressed as follows:

10.4.3  Collaborative filtering (User-User)—Example

Let us do an exercise on user-user collaborative filtering to predict User1’s rat-
ing of Schindler’s List, based on the utility matrix shown in Table 10.10, based on 
a scale of 0 to 10. The steps are enumerated below.

Step-I Center and scale

The psychology of users in rating items differs. Some users liberally rate in the 
higher end, e.g., 5–10, whereas some may be stingy, awarding ratings in a lower 

�i=1..k Similarity (Ux,Ui) ∗ Rating (Ui)

Predicted Rating by X = Rx =

G−Mean + U-Mean-Diff+ Similarity (U, Ui) ∗ Rating (Ui).



339

Table 10.11  User-user collaborative filtering—cosine similarity

10.4 Recommendation Systems

range, e.g., 3–7. For someone consistently awarding ratings in the range of 5–10, a 
rating of ‘6' may suggest a negative perception. However, for an individual accus-
tomed to ratings in the range of 3–7, a ‘6' rating might be considered positive. To 
avoid such bias, we will first center the ratings by subtracting the cell values from 
his/her mean rating (X−µ). Table 10.10a shows the user-wise (row-wise) mean. 
Table 10.10b shows each nonnull cell value of X centered around the mean. Table 
10.10c shows missing values imputed with zero. (Note that zero is the row-wise 
mean of the centered data.) We must standardize the data to one scale if different 
scales are used.
Step-II Compute the cosine similarity of User-1 with the other users who have 
rated the item under consideration

The next step is to compute the similarity of user-1 with the other users who have 
rated the movie Schindler’s List. As shown in an example in Chap. 8, cosine simi-
larity is expressed as follows:

Cosine (User1, User2) = User1.User2 / ||User1||.||User2||
Cosine similarity values range from −1 to 1, with higher values indicating 

greater similarity. Table 10.11a shows the computation of the L2 norm of user-wise 
ratings—||User-X||. This is computed as the square root of the row-wise squared 
sum of squares of the user ratings. Table 10.11b shows the computation of the dot 
products—User1.User2, User1.User3, and User1.User4. Table 10.11c shows the 
computation of the cosine similarity of User1 with User2, User3, and User4.

http://dx.doi.org/10.1007/978-981-99-0353-5_8


340 10 Computational Techniques

For example,

||User1||   = Square root of the Sum of squares of all the ratings of User1
            = √ (1.1**2 + 1.6**2 + (-2.7)**2) 
            = √ (1.21 + 2.56 + 7.29) = 3.326 
||User2||   = Square root of the Sum of squares of all the ratings of User2
            = √ ((-1.46)**2 + (-0.26)**2 + (-0.36)**2 + 1.54**2 +0.54**2) 
            = √ (2.132 + 0.068 + 0.13 + 2.732 + 0.292) = 2.234
User1.User2 = Dot Product {Multiply Corresponding Cells and Sum Up) 
            = 1.1 * (-1.46) + 1.6 * 1.54 = 0.858 
Cosine (User1, User2) = User1.User2/ ||User1||.||User2||
                      = 0.858/ (3.326 x 2.234) = 0.115
Similarly, 
Cosine (User1, User3) = 0.972/ (3.326 x 1.758) = 0.166

Cosine (User1, User4) = - 1.428/ (3.326 x 1.211) = - 0.354

Step-III Predict User-1’s rating, based on K nearest neighbor’s rating

Consider ‘k’ nearest neighbor’s similarity rating. Let ‘k’ = 2. From Table 10.11c, 
we observe that the users User2 and User3 appear to be closest to User-1, with 
similarity measures of 0.115 and 0.166, respectively. Taking the weighted average, 
we can predict User-1’s rating of Schindler’s List as follows:

User-1's Rating of Schindler's list =

[User2's rating of Schindler's List * Cosine (User1, User2) +

User3's rating of Schindler's List * Cosine (User1, User3)] / [Cosine (User1, User2) +

Cosine (User1, User3)]= [8 * 0.115 + 9.2 * 0.166] / [0.115 + 0.166] = 8.6 

So User-1's Rating of Schindler's list is predicted to be 8.6!

Interpretation: The predicted rating for Schindler's List is 8.6, suggesting that, 
based on the collaborative filtering model, User-1 will likely have a positive opin-
ion of the movie. This prediction is a statistical estimation based on users' ratings 
with similar preferences. Individual tastes and subjective factors may influence 
user experiences, and the predicted rating serves as a recommendation rather than 
a definitive outcome.

10.4.4  Collaborative Filtering (Item-Item)

In the above exercise on user-user collaborative filtering, we took the similar-
ity of the user under consideration with k-users, by computing the cosine similar-
ity between ‘k’ row-wise ratings available. Similarly, we can compute item-item 



341

Table 10.12  UV decomposition

7.6 8.1 3.8 ? U01 U02 V11 V12 V13 V14

6 7.2 7.1 ? 9 8 = U11 U12 x V21 V22 V23 V24

7 8 7.5 6.2 9.2 U21 U22

7.5 8 9 8.8 U31 U32

U41 U42

U51 U52

U61 U62

U71 U72

U81 U82

U91 U92

10.4 Recommendation Systems

collaborative filtering if we compute the similarity between ‘k’ column-wise rat-
ings. This approach helps predict a user’s rating based on k similar items that the 
user has rated earlier. For example, we can predict User2’s rating for Kung Fu 
Panda-4, based on his/her rating of Kung Fu Panda-1, Kung Fu Panda-2, and Kung 
Fu Panda-3.

10.4.5  UV Decomposition

Note that movies are rated based on numerous features such as genre, language, 
director, actors, cinematography, music, and story. These ratings may be obtained 
explicitly or from user review texts. In any case, a comprehensive rating of multi-
ple product or service features is never available for analysis. The UV decomposi-
tion method approaches this from the angle of underlying feature summarization.

Assume a utility matrix M with m rows and n columns. Our task is to find two 
matrices U with n rows and d cols, and V with d rows and m cols, such that U.V 
closely approximates M.

By doing so, we summarize and reduce the features to d dimensions that allow us 
to characterize users and items closely. The dimension d emerges from iterative trials. 
Machine learning techniques can be used to implement this effectively. Once the U 
and V matrices are determined we can compute the missing values of M from them.

In our example, M is 4 × 10, U is 10 × 2, V is 2 × 4; and 2 is the reduced 
dimension of underlying features we expect to compute. See Table 10.12. Initially, 
we populate the U and V matrices with random values. We will compute U.V and 
find the deviation from the actual values of matrix M. The previous step will be 
treated many times to minimize deviation or error. Once the error converges, we 
have U and V with nonnull values in every cell. From this, we can compute the 
predicted value of missing values (ratings) in the matrix M.

[M]n×m ≈ [U]n×d[V ]d×m



342 10 Computational Techniques

Summary

Data may be modeled based on the parameters of the underlying probability 
distribution. Where such an approximation (to an underlying probability distri-
bution) is not possible, we use general computational algorithms. Some of these 
algorithms may use certain statistical summarizations while remaining predomi-
nantly nonstatistical. Common examples of computational techniques include 
Google PageRank, market basket analysis, recommendation systems, social net-
work analysis, etc.

Market Basket Analysis

Some patterns in data may occur repeatedly. Those patterns that have a high 
frequency of occurrence are called frequent patterns. The patterns can be sub-
structures, sequences, or items. Frequent itemset mining leads to discovering 
associations and correlations among items in large transactional datasets. Market 
basket analysis (MBA) is one such application. In this process, we analyze cus-
tomer buying habits by finding associations and correlations between the items 
customers place in their ‘shopping baskets’.

Support indicates the frequency of the itemset set in a transaction dataset. 
Confidence is the probability that the presence of Itemset A implies the presence 
of itemset B. An association rule implies that if an itemset A occurs, then itemset 
B also occurs with a certain probability. Any subset of a frequent itemset must be 
frequent. Therefore, if an itemset is infrequent, its superset should not be gener-
ated—this rule is called the Apriori pruning principle.

The Apriori algorithm is a popular tool used for market basket analysis in 
retail analytics. Like the Apriori algorithm, the frequent pattern growth algorithm 
also offers an efficient approach to extracting association rules from large data-
sets of transaction logs. Both are now commonly applied in clickstream analysis, 
cross-selling recommendation engines, information security, bioinformatics, etc.

Apriori algorithms need large memory and processing time when processing 
large datasets. Therefore, enhanced algorithms such as PCY, Multistage, Multi-hash, 
Randomized, and SON were developed to handle big data, especially data streams.

Social Network Analysis

Social network analysis helps us to understand entities and their relationship in 
a community. A social network structure can be represented as a graph. Here, 
the vertices are individuals or organizations, and the links are interdependencies 
between the vertices, representing friendship, common interests, or collaborative 
activities. If there is a weightage associated with the relationship, that can be rep-
resented by labeling the edges with an appropriate number. These graphs can be 
directed or undirected.



343Summary

Common categories of measurements in social network analysis include—net-
work connection, network distribution, and network segmentation. Social network 
relationships tend to cluster. However, numerous challenges in clustering network 
graphs make them computationally expensive. Moreover, the usual statistical 
methods used in clustering may not be applicable here.

There are various methods for community detection in social networks. The 
Girvan-Newman algorithm detects communities by progressively removing edges 
from the original network. Correlation clustering aims to cluster items based on 
the similarity between items. The objective could be to minimize the number of 
disagreements (popular method) or to maximize the number of agreements. A 
complete bipartite graph has two groups of nodes. We can find complete bipartite 
graphs from a set of nodes using the technique used to find frequent itemsets.

Recommendation Systems

The limitation of shelf space prohibits a physical retailer from storing all types of 
products in a shop. While the fast-moving ones can be displayed, the others go to 
oblivion. Online shopping websites are free of this limitation as they can main-
tain an online catalog of a huge number of items and their features. Websites offer 
recommendations for items such as movies, books, products, services, or content 
based on personal preferences. These websites build a personal profile based on 
our earlier ratings, purchases, website behavior, etc.; or based on the interests 
shown by people of similar profiles. They employ recommendation systems to 
help users discover new, old, popular, or esoteric content, products, services, etc.

There are two primary types of recommendation systems—collaborative filter-
ing and content-based filtering. Content-based filtering recommends items with 
‘characteristic features’ similar to the ones a user has rated. However, they tend 
to recommend only the items similar to those the user under consideration has 
already rated. This results in a lack of diversity and novelty in recommendations. 
Moreover, content-based recommendation systems rely on the capture of relevant 
features of items, which is challenging.

Collaborative filtering recommends an item based on (a) a user’s ratings (actu-
ally, rankings) of similar items that the user has rated or (b) the ratings of users 
with similar profiles who have rated the item in question. The former is known as 
item-item collaborative filtering and later as user-user collaborative filtering. If a 
user rated similar items, item-item collaborative filtering is more effective and eas-
ier to implement than user-user collaborative filtering algorithms. It is also com-
putationally efficient as the similarity matrix can be pre-computed and stored for 
quick lookup.

Products or services are rated based on numerous features. A comprehensive 
rating of multiple features is never available for analysis. The UV decomposition 
method approaches this from the angle of underlying feature summarization. Once 
the U and V matrices are determined, we can compute the missing values of X 
from them.



344 10 Computational Techniques

Questions

Comprehension

 1. Provide examples of computational techniques in data mining.
 2. Describe frequent itemsets and their applications in various domains.
 3. Summarize the key concepts and applications of market basket analysis in a 

few sentences.
 4. Define the Apriori principle.
 5. Describe the Apriori algorithm.
 6. List the basic principles in association rule mining, using Apriori algorithm.
 7. Discuss association rule mining in high dimensional data space.
 8. Explain the concepts of support, confidence, and lift in association rule min-

ing. How do these metrics help in understanding patterns in data?
 9. Name different types of social networks and mention how they differ.
 10. Define weighted graphs.
 11. How to find the neighbors of a node in the graph?
 12. Describe the betweenness of edges with an example.
 13. Write a brief note on the incidence matrix and adjacency matrix
 14. Write a brief note on bipartite graphs.
 15. Describe the Girvan-Newman algorithm for community detection. What role 

does the betweenness of edges play in this algorithm?
 16. Write a brief note on correlation clustering.
 17. Write a brief note on the CC pivot algorithm for correlation clustering.
 18. Define the distance measures Jaccard, Cosine, and TF.IDF, with suitable 

examples and applications.
 19. Describe UV decomposition in recommendation systems.

Analysis

20. How does the Apriori pruning principle contribute to the efficiency of the 
Apriori algorithm?

21. Compare and contrast the Apriori algorithm, PCY algorithm, Multistage 
Algorithm, Multi-hash Algorithm, and Toivonen’s Algorithm in terms of their 
memory requirements and efficiency.

22. Explain the challenges in social network clustering compared to traditional 
clustering.

23. How does the choice of distance measures in cluster analysis differ between 
traditional datasets and social network graphs?

24. Explain the concept of community detection in social networks and why tradi-
tional clustering techniques may not be directly applicable.

25. Compare and contrast the three ways of representing a graph for computa-
tions: adjacency list, adjacency matrix, and incidence matrix.

26. Discuss how long-tail phenomena necessitate recommendation systems.



345Questions

27. Describe content-based and collaborative filtering for recommendation sys-
tems. Compare and contrast their strengths and weaknesses.

Application

28. Imagine you are a retail manager. How would you apply market basket analy-
sis to improve the layout of your store and boost sales? Based on market bas-
ket analysis, can you propose specific strategies for cross-selling, up-selling, 
and bundling products?

29. Consider a scenario in financial services where each debit/credit card account 
is associated with a set of payments. How could frequent itemsets be valuable 
in this context? Provide examples.

30. Suppose you are a marketing strategist. How could the insights gained from 
community detection algorithms like the Girvan-Newman algorithm help to 
prepare a strategy for targeted advertising or product promotion on social 
media?

31. Discuss how community detection algorithms could enhance content recom-
mendation systems on social media platforms. What benefits might this bring 
to users and content creators?

32. How could a content-based recommendation system be implemented for an 
e-commerce platform selling diverse products?

33. How would you implement a collaborative filtering system for a new online 
bookstore with a limited user base?

34. In what scenarios might user-user collaborative filtering outperform item-item 
collaborative filtering and vice versa?

35. Can you provide examples of real-world applications where collaborative fil-
tering has been successfully employed?

36. Describe the steps in building a collaborative filtering algorithm for a movie 
recommendation website.

Exercises

Exercise 10.1 Apriori Algorithm to Identify Frequent Itemsets

Customer purchases in a retail store are listed below. Do association rule mining, 
satisfying minimum support of 0.5 and minimum confidence of 0.5. (Note: strong 
association rules satisfy both minimum support and minimum confidence).

['A', 'C', 'D'], 
['B', 'C', 'E'], 
['A', 'B', 'C', 'E'], 
['B', 'E']



346 10 Computational Techniques

Fig. 10.10  Clustering problem

Exercise 10.2 Association Rule Mining—Snacks Store

Consider the customer purchases in the snacks section of a retail store given 
below. Perform association rule mining satisfying minimum support of 0.15, and 
minimum confidence of 0.6.

['cashews', 'cookies', 'chocolate'], 
['cake', 'mixture', 'cookies'], 
['dates', 'peanuts'], 
['biscuits', 'peanuts'], 
['crackers', 'peanuts'], 
['cookies', 'dates'], 
['mixture', 'apricots', 'peanuts', 'chocolate'], 
['peanuts', 'cashews', 'cake', 'crackers'], 
['apricots', 'dates', 'crackers', 'chocolate', 'cashews', 'peanuts']

Exercise 10.3 West Virginia Fraternity—Most Influential Individual(s)

Refer to Tutorial 10.6, where we analyzed the closeness of a student fraternity in 
West Virginia. Here, we have a similar dataset, where the cell values indicate the 
closeness of students ranked on a scale of 1 ... 5 (No interaction … Very High 
Interaction). Find the most influential individual(s) in the network.

# Download the dataset ‘WV-fraternity.csv’ from GitHub
# Data File – (Sundararajan, 2023)

Exercise 10.4 Social Network Analysis

Compute the betweenness of edges and partition the network graph in Fig. 10.10 
into two clusters.



347References

Exercise 10.5 Recommendation Systems

Predict the Kungfu Panda-4 rating by User2, using the utility matrix below.

Legend: Kung Fu Panda: KP; The Exorcist: Ex; Item-Item Rating

KP-
1

KP-
2

KP-
3

KP-
4

EX-
1

EX-
2

Omen-
1

Omen-
2

Schindler's 
List

Forrest 
Gump

User1 7.6 8.1 3.8

User2 6 7.2 7.1 ? 9 8

User3 8 8.5 8.3 7.8 8 7.5 6.2 9.2

User4 7.5 8 7.8 7.3 8 9 8.8

References

Ailon, N., Charikar, M., & Newman, A. (2008). Aggregating inconsistent information: Ranking 
and clustering. Journal of the ACM, 55(5). https://doi.org/10.1145/1411509.1411513

Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. 
Proceedings of the National Academy of Sciences of the United States of America, 99(12). 
https://doi.org/10.1073/pnas.122653799

Han, J., & Micheline Kamber, J. P. (2014). Data mining. Concepts and techniques, 3rd Edition 
(The Morgan Kaufmann Series in Data Management Systems). In Proceedings—2013 
International Conference on Machine Intelligence Research and Advancement, ICMIRA 
2013.

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2020). Mining of massive datasets. In Biometrics 
(Issue 4). Cambridge University Press. https://doi.org/10.1111/biom.12982

networkx. (2023). networkx. https://networkx.org/documentation/stable/tutorial.html
Sundararajan, S. (2023). MVA-ML. https://github.com/sun-sri/MVA-ML
Zafarani R, Abbasi MA, Liu H (2014) Social media mining: An introduction. Cambridge 

University Press

http://dx.doi.org/10.1145/1411509.1411513
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1111/biom.12982
https://networkx.org/documentation/stable/tutorial.html
https://github.com/sun-sri/MVA-ML


349

Learning Objectives

• Understand the fundamentals of supervised machine learning techniques.
• Describe optimization techniques.
• Explain the gradient descent optimization technique in regression and classifi-

cation and demonstrate its application.
• Explain regularization techniques in regression and classification and demon-

strate their application.
• Demonstrate cross-validation techniques in regression and classification.
• Explore bias-variance trade-off, test-train convergence, and hyperparameter 

tuning.
• Understand ensemble methods for model performance improvement.

Overview

This chapter will discuss supervised machine learning techniques and their 
application in regression and classification. The topics include introduction to 
supervised machine learning, optimization, gradient descent, regularization, res-
ampling, bias-variance trade-off, test-train convergence, hyperparameter tuning, 
and ensemble methods. We will apply our learning to solve regression and classifi-
cation problems using Python.

Chapter 11
Machine Learning

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_11

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_11.

https://doi.org/10.1007/978-981-99-0353-5_11#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_11&domain=pdf


350

Definitions

Bias-variance trade-off: Increasing a model’s complexity will typically increase its 
variance and reduce its bias. Reducing the model complexity increases its bias and 
reduces its variance. So, there is a trade-off between the two.
Bootstrap: Bootstrap resamples at random, with replacement. Also, see ‘resampling’.
Data pipeline: A machine learning job may consist of a sequence of tasks. 
Pipelines are functions available in the scikit-learn software package to define and 
automate such workflows.
Elastic net regularization: A combination of L1 and L2 regularization is used in 
elastic net regularization. Elastic net is useful when multiple features are corre-
lated with one another. Also, see ‘regularization’.
Gradient descent: Gradient descent is an iterative optimization technique for find-
ing the local minimum of a differentiable function. This technique can find the 
model parameters (coefficients) that optimize a specified loss function.
Hyperparameters: A machine learning model is a mathematical model with several 
parameters learned from the data. Another set of parameters is manually set during 
the model development phase to facilitate effective model development. These are 
known as hyperparameters. Examples include the regularization parameters, the 
learning rate α, the k in k-nearest neighbors, the hyperparameters for support vec-
tor machines—C and σ, etc.
K-fold cross-validation: K-fold cross-validation is a resampling procedure. In this, 
we divide the entire dataset into k subsets at random. We do k training sessions. In 
each session, we use one subset as the test sample, while the other k − 1 subsets 
are combined to form the training sample. See also ‘resampling’.
Lasso regression is a regularization method that solves the minimization of the 
sum of the magnitude (L1 norm) of the coefficients with a penalty term added. 
This method is helpful for feature elimination or feature selection. Also, see 
‘regularization’.
Machine learning: While humans learn from experience, machines learn from 
data and improve their accuracy over time, without being programmed to do so. 
Machine learning involves identifying the correct model parameters that optimize 
the predictive capability by deriving information from available data.
Mini-batch gradient descent: This is a technique for optimization. In the mini-
batch gradient descent method, a subset of ‘m’ (1 < m > n) data points are randomly 
selected in each iteration. This method is a compromise between the speed of SGD 
and the goodness of fit of batch gradient descent. The gradient descent method 
is repeated numerous times to reach a specified convergence criterion. See also 
‘Gradient descent’.
Regularization: Regularization is a class of techniques that reduce model complex-
ity and prevent overfitting. Ridge regression and lasso regression are examples of 
regularization methods.

11 Machine Learning



351

Resampling: Resampling procedures are based on repeating the training and test-
ing on different randomly chosen subsets or splits of the original dataset.
Ridge regression is a regularization method that solves the minimization of the 
least squares (L2 norm) with a penalty term added. Also, see ‘regularization’.
Stochastic gradient descent: This is a technique for optimization. In Stochastic 
Gradient Descent (SGD), we randomly select one data point from among the n 
data points available in each iteration. The gradient descent method is repeated 
numerous times to reach a specified convergence criterion. Also, see gradient 
descent.
Supervised learning: In machine learning, the sample data consists of input fea-
tures and the desired outputs (targets). Based on the data samples, an algorithm 
learns to predict the output (target), given a set of features.

11.1  Exploring Supervised Machine Learning

As we know, a computer system is programmed to execute a set of actions 
based on the instructions stored in it. However, a machine ‘learning’ (ML) system 
learns from the data to which it is exposed.

Artificial intelligence (AI) agents and systems are built to match or exceed 
human capabilities in information analysis and complex decision-making. 
Machine learning is a specific approach within AI that focuses on developing algo-
rithms and models capable of learning from data and refining their accuracy over 
time, all without explicit programming. Machine learning involves identifying 
the correct model parameters that optimize the predictive capability and deriving 
information from available data. The learning process can be broadly categorized 
as follows:

• Supervised learning, where the training data includes desired outputs.
• Unsupervised learning, where the training data does not include desired 

outputs.
• Semi-supervised learning, where the training data includes a few desired 

outputs.
• Reinforcement Learning (RL), where an agent learns to make decisions by 

interacting with an environment to maximize cumulative rewards.

In this chapter, our primary focus centers on one prominent machine learning 
paradigm—supervised learning. The next chapter delves into the domain of arti-
ficial intelligence and explores a specific machine learning subset known as deep 
learning.

Supervised Learning

In supervised learning, the sample data consists of input features and the desired 
outputs (targets). The sample is divided into two sets—the training dataset and the 

11.1 Exploring Supervised Machine Learning



352 11 Machine Learning

Fig. 11.1  Supervised learning—classification and regression

test dataset. A training dataset is used to train algorithms such as Bayes belief net-
works, linear discriminant analysis, decision trees, support vector machines, and 
many others. The model is then tested over the test dataset. The train-test process 
is repeated till an accurate model emerges.

Algorithms for classification are trained to predict categorical class labels 
(nominal or ordinal). See Fig. 11.1a—classification of Iris flowers. Typical appli-
cations include medical diagnosis (whether a patient tests positive or negative for 
a disease, based on biochemical or histopathological test results), the recognition 
of a handwritten digit (in this case, there are 10 classes labeled 0 to 9), credit/
loan approval, fraud detection (whether a financial transaction is fraudulent or 
not), webpage categorization, and email spam. Regression algorithms are contin-
uous-valued functions trained to predict numeric values (real numbers). Typical 
applications include annual sales turnover, revenue, or yield of crops.

11.2  Learning by Gradient Descent Optimization

The fundamental components of machine learning include (a) the model, such 
as a classifier or regressor and (b) the learning method, exemplified by gradient 
descent or its variations.

Gradient descent is a popular optimization strategy in machine learning and 
deep learning. It is an iterative technique used in regression and classification 
problems. Variations to gradient descent include stochastic gradient descent, mini-
batch gradient descent, batch gradient descent, Adagrad, and Adam. Let us first 
look at the limitations of pure algebraic solutions in optimization and why iterative 
techniques are necessary.



353

Fig. 11.2  Linear regression

11.2.1  Regression Analysis: From Exact Solutions 
to Gradient Descent

Regression analysis examines associative relationships between a target varia-
ble (y) and feature variables X {X1 … Xk}, where k is the number of features. The 
following equation shows one instance of y:

where w’s are the weights, or coefficients, associated with the feature variables.
The above equation may be rewritten as

We can optimize the above equation by altering (W). To solve for k variables, 
we need at least k distinct equations. In practice, we may have a large number of 
observations n >> k. As discussed in Chap. 5, we may use an exact solution like 
the matrix method. However, the solution does not guarantee exact results. For 
example, no single line y = f(X) can predict all the data points in the scatter plot in 
Fig. 11.2.

Instead of an exact solution, we look for one that minimizes the difference 
between the observed value of y and the value estimated from the equation (ŷ). The 
difference is called error or residual. We assume that the features (X1 … Xk) are 
uncorrelated.

y(i) = W0 +W1X
(i)
1 +W2X

(i)
2 + · · · +WkX

(i)
k + error

y(i) = WTX(i) + error

(11.1)Residual Sum of Squares (RSS) =

n∑

i=1

(y(i) − ŷ
(i)
)
2

(11.2)Mean Squared Error (MSE) =

n∑

i=1

(
y(i) − ŷ

(i)
)2

/n

11.2 Learning by Gradient Descent Optimization

http://dx.doi.org/10.1007/978-981-99-0353-5_5


354 11 Machine Learning

Huber loss combines the benefits of MSE and MAE, and is more robust in han-
dling outlier (see Sect. 2.8.2) data than MSE.

where
‘δ’   determines the error (or loss) threshold for the transition from MSE to MAE.

The ordinary least squares method, or linear least squares method, estimates the 
parameters of a regression model by minimizing the sum of the squared errors. 
We have assumed k features and sample size n. Given that X is a matrix of size (n, 
k), OLS has a computation cost of O (nk2) if we look for an exhaustive algebraic 
solution.

Optimization can generally be stated as minimizing or maximizing some func-
tion f(W, X) by altering W. The function that we want to optimize is called the 
objective function or criterion (or cost function, loss function, or error function). 
In other words, a loss function gives a measure of the error, or the difference 
between the predicted output of a model and the actual output. The loss functions 
RSS, MSE, and MAE discussed above are used in developing regression-based 
machine learning models. During training, our objective is to minimize prediction 
errors.

When the data is large, an exhaustive mathematical solution may be prohibitive. 
Moreover, it may not automatically guarantee a reliable model fit, as the presence 
of noise, outliers, and other factors may prevent insight into the actual parame-
ters of the underlying distribution. An alternative is to use an iterative solution 
using methods such as gradient descent, giving due consideration to the model’s 
reliability.

11.2.2  Gradient Descent Optimization Techniques

Several cost functions (or loss functions) are used in machine learning. 
Examples include the loss functions used in regression such as absolute error, 
squared error, and Huber loss; and the functions used in classification such as 
cross entropy, log loss, exponential loss, and hinge loss. In this section, we explore 

(11.3)MeanAbsolute Error (MAE) =

n∑

i=1

|y(i) − ŷ
(i)
|/n

Huber Loss =
1

n

n∑

i=1

(
y(i) − ŷ

(i)
)2

, if

∣∣∣y(i) − ŷ
(i)
∣∣∣ ≤ δ(∼MSE)

=
1

n

n∑

i=1

δ(

∣∣∣y(i) − ŷ
(i)
∣∣∣−

1

2
δ), if

∣∣∣y(i) − ŷ
(i)
∣∣∣ > δ(∼MAE)

http://dx.doi.org/10.1007/978-981-99-0353-5_2


355

an iterative method for optimizing a cost function (alternatively, minimizing the 
loss function)—the gradient descent.

Gradient descent is an iterative optimization technique to find the local mini-
mum of a differentiable function (Chollet 2019). Gradient descent is used to find 
the values of a function’s parameters (coefficients) that optimize a cost function. 
See Fig. 11.3a. The gradient descent method picks training samples up at a time. 
The average prediction error is computed. Based on that, each coefficient value 
(Wi’s) is adjusted. The adjustment is based on the prediction error and parameter 
α. This process is repeated many times for convergence.

Assume we have 1 data point (sample size 1) and 1 feature (X). The observed out-
come is y, whereas the estimated or computed outcome is ŷ. The residual is (y − ŷ). 
We will take a derivative of (y− ŷ)2 upon W and do one weight adjustment (from W 
to W’). Assume that we have 10 features (Xi, i = 1 … 10) and the corresponding coef-
ficients (Wi, i = 1 … 10). We have to take 10 partial derivates d(y − ŷ)2/dWi, for each 
Wi, and adjust the respective coefficients Wi. Therefore, we have 10 adjustments to be 
done.

Now let us consider batch gradient descent. Assume we have 100,000 data 
points (sample size = 100,000) and 10 features (Xi, i = 1 … 10). We will have 
100,000 residuals. We need to compute 100,000 * 10 partial derivates. Then do 
1 million adjustments in an iteration. In the Stochastic Gradient Descent (SGD) 
method, in an iteration, we pick up just one data point at random from among the 
100,000 data points available. Therefore, it will be fast.

In the mini-batch gradient descent method, a subset of ‘m’ data points is 
picked up (sample size = m; 1 < m > 100,000), in each iteration, at random. This 
is a compromise between picking up, just one data point at random in SGD and 
all the 100,000 data points in batch gradient descent. This results in a compromise 
between the speed of SGD and the goodness of fit of batch gradient descent.

Mini-Batch Gradient Descent Algorithm

The general steps involved in the gradient descent algorithm are listed below:
Consider a regression model in k variables,

1. Initial step: Initialize coefficients (W0 … Wk) with random values. (There are 
guidelines for initialization, which are discussed in the next chapter.) Shuffle 
the data. Split the data into a fixed number of ‘m’ mini-batches of size m.

2. Repeat over each mini-batch 1 … m.

a. Cost evaluation: Compute the sum of the cost over all the data instances in 
the mini-batch. For example, assume the cost function is sum of squared 
errors, Σ (y − ŷ)2.

b. Derivative calculation: Compute the sum of partial derivatives Σ 
[δ(cost-function)/δWi], for each variables Wi of the cost function, over all 

ŷ
(i)

= W0 +W1X
(i)
1 +W2X

(i)
2 + · · · +WkX

(i)
k

11.2 Learning by Gradient Descent Optimization



356 11 Machine Learning

(a) Gradient Descent (b) Oscilla�ons due to high ‘r’

Fig. 11.3  Gradient descent and oscillations

the data instances in the mini-batch. (The sum Σ [δ(cost-function)/δWi] is 
also called the gradient of Wi.)

c. Update the coefficients. Move the weights in the opposite direction of the 
gradient to reduce the loss by a small step.

3. Iterate: Repeat step 2 until a termination criterion is reached. The criterion may 
be set as follows—the loss or mismatch is within an acceptable limit, there is 
no significant difference in the loss over a set of iterations, or the number of 
iterations has reached a set limit.

The SGD, mini-batch, or batch gradient descent is repeated several times to 
reach the specified convergence criteria. The convergence process will be pro-
longed if the learning rate (r) is very low. If r is very high, oscillations may occur, 
so the model may not converge. See Fig. 11.3b. When the entire training dataset 
passes through the machine learning algorithm, we say one epoch is completed. 
The entire training dataset is used in each epoch in full-batch gradient descent. In 
mini-batch gradient descent, the training dataset is divided into mini-batches, and 
each epoch consists of multiple iterations, with each iteration updating the model 
based on a mini-batch. A pass over all the mini-batches completes one epoch.

SGD needs low memory and converges very fast. Therefore, this method 
is preferred for large data. SGD gives a satisfactory solution, but it may not be 
the optimal. However, it can come out of the local minimum fast. See Fig. 11.4. 
Samples are selected randomly; therefore, data must be shuffled before the start 
of every epoch. The batch gradient descent method needs large memory and takes 

Wi = Wi− r ∗ [� δ(cost-function)/δWi],

where r is a fraction, aka ′learning rate′.



357

Fig. 11.4  Local minimum, 
global minimum

Local Minimum 

Local Minimum 

Local 
Minimum 

Global Minimum

• •

Fig. 11.5  Processing pipeline

high computation time. Therefore, this method is not preferred for large data. The 
convergence is slow and cannot escape the local minimum quickly. However, the 
method converges to the optimal solution ultimately. As mentioned earlier, the 
mini-batch gradient descent method is a compromise between the speed of SGD 
and the goodness of fit of batch gradient descent.

There are several other gradient descent algorithm variants. Adaptive learning 
rate methods adjust the learning rate based on the history to improve convergence. 
Examples include Adagrad, RMSProp, and Adam. These methods are very pop-
ular in deep learning and are discussed in the next chapter.

Data Standardization and Pipeline

A machine learning job may consist of a sequence of tasks. In Python scikit-learn, 
pipelines help to define and automate such workflows. See Fig. 11.5. Data stand-
ardization is a task that is recommended before the use of learning algorithms. 
Standardization or normalization transforms the features to some chosen scale 
such as [0.0: 1.0], or [−1.0: +1.0]. z-score normalization is a popular technique 
used in machine learning. It rescales features to have a mean of 0 and a standard 

11.2 Learning by Gradient Descent Optimization



358 11 Machine Learning

deviation of 1. Some of the standardization methods are discussed in Chap. 2. 
Many algorithms, especially SGD, are sensitive to scaling. Therefore, standardized 
data is usually provided as input.

11.2.3  Stochastic Gradient Descent Regressor

In the previous section, we saw that Stochastic Gradient Descent (SGD) is a 
subcategory of the gradient descent optimization method, where training samples 
are picked up one at a time, at random (sample size = 1). SGD finds successful 
applications in large-scale and sparse machine learning problems, especially deep 
learning. Some of the applications include text classification and natural language 
processing.

SGD requires hyperparameters such as the regularization method (L2, elastic 
net); α; the number of epochs. To get good results, shuffle the training data before 
starting any epoch. SGD is sensitive to feature scaling. In general, features are 
standardized before use. With standardization, SGD converges in much fewer iter-
ations. Please note that the parameters are different for SGD regression and SGD 
classification.

scikit-learn Parameters for Stochastic Gradient Descent Regressor

Some of the parameters applicable for SGD regression are mentioned below. They 
are for information only. You may skip this section altogether. Those who want to 
learn about SGD parameters may refer to scikit-learn documentation.

The loss function (‘loss’ parameter) takes the default value of ‘squared_loss’ in 
regression. The loss functions allowed include ‘squared_error’ for ordinary least 
squares; ‘huber’, a modification of ‘squared_error’, to reduce the impact of outli-
ers; ‘epsilon_insensitive’ for linear SVM regression; and ‘epsilon_sensitive’ which 
ignores errors less than epsilon.

In machine learning, we use regularization for smoothening (discussed in the 
next section). The parameter ‘alpha’ indicates the regularization rate or the mul-
tiplication factor in the regularization term. The learning rate could be independ-
ent or related to the alpha parameter. The parameter alpha defaults to 0.0001. The 
parameter ‘penalty’ refers to the regularization method (see next section). The pos-
sible values are {‘l2’ for ridge regression, ‘l1’ for lasso regression, and ‘elasticnet’ 
for a combination of the two}. ‘l1_ratio’ is used only if the penalty is ‘elasticnet’; 
the default value is 0.15, which implies 15% lasso and 84% ridge.

The parameter ‘max_iter’ is the number of epochs and defaults to 1000. The 
‘shuffle’ parameter indicates whether to shuffle training data after each epoch. It 
defaults to True. ‘epsilon’ is the tolerance in the prediction. It defaults to 0.1.

Multiple parameters affect early stopping. Convergence is checked against the 
training or validation loss depending on several parameters. If there is no change 

http://dx.doi.org/10.1007/978-981-99-0353-5_2


359

in performance, training will stop. The parameters include early_stopping, valida-
tion_fraction, n_iter_no_change, ‘tol’ (tolerance).

Tutorial 11.2    Regression: Stochastic Gradient Descent (SGD)

We demonstrate regression model building using Stochastic gradient descent. 
We are using diamonds dataset. The objective is to predict diamond price 
(y) based on its features (X): 'carat', 'cut', 'color', 'clarity', 'depth', 
'table', 'x', 'y', 'z'. The dataset diamonds is described in Chapter 1.
We will use scikit library extensively in this Chapter. You may refer to 
https://scikit-learn.org/stable/

Tutorial 11.2.1 Regression Data Setup / Standardisation

import seaborn as sb
from sklearn.preprocessing   import StandardScaler
import numpy as np

d = sb.load_dataset('diamonds')
d = d.dropna()  # drop null valued rows

Convert category labels to integers for use in the regression model
d['cuti'] = d.cut.astype("category").cat.codes
d['colori'] = d.color.astype("category").cat.codes
d['clarityi'] = d.clarity.astype("category").cat.codes

X = d[['carat', 'cuti', 'colori', 'clarityi', 
       'depth','table', 'x', 'y', 'z']]
y = d.price

Standardize features using z score transformation
Xz = StandardScaler().fit(X).transform(X)

Tutorial 11.2.2 Build Regression Model Using SGD

import numpy as np

Import stochastic gradient descent regressor (SGDregressor model)
from sklearn.linear_model import  SGDRegressor

Setup SGD regressor
regressor = SGDRegressor(max_iter=50) 

Run regression
model = regressor.fit(Xz, y)

Check the regression score and regression results
model.score(Xz,y) # 0.907
np.round(model.intercept_,1) # 3926.1
np.round(model.coef_,1)

[5090.6, -138.4, -525.5, -794.4, -121.5, -54.3, -943.5, 38.3, -16.3]

11.2 Learning by Gradient Descent Optimization

https://scikit-learn.org/stable/


360 11 Machine Learning

model.get_params()

'alpha': 0.0001,
 'epsilon': 0.1,
 'eta0': 0.01,
 'l1_ratio': 0.15,
 'learning_rate': 'invscaling',
 'loss': 'squared_loss',
 'max_iter': 50,
 'n_iter_no_change': 5,
 'penalty': 'l2',
 'power_t': 0.25,
 'shuffle': True,
 'tol': 0.001,
 'validation_fraction': 0.1,
..
model.intercept_  # 3947.012
model.score(Xz,y) # 0.907
model.n_iter_     # 30

Inference:
SGD method parameters and model coefficients are listed above. SGD converged 
in 30 iterations. Score is 0.907

11.3  Regularization for Smoothening

Regularization is a class of techniques used to reduce model complexity and 
prevent overfitting. For example, see Fig. 11.6, which shows the y = f(X) regres-
sion model. The blue line represents linear regression (with degree = 1). This is 
an underfit. We get an exact fit with a polynomial of degree 6, as shown by the red 
line that touches all the data points. However, we call this model an overfit model. 
This model will ‘memorize’ and ‘recall’ the seven given sets of data points, with-
out any error. However, it may fail to predict the outcome of an unknown data. The 
black line (with degree = 2) is considered an optimal fit.

Let us consider regularization in the context of a linear model (degree = 1). 
Ridge and Lasso regression are simple techniques to reduce model complexity and 
prevent overfitting, which may result from linear regression. The ridge regression 
shrinks the weights by applying a penalty term called L2 norm (the sum of the 
squared weights) iteratively. In this process, the features with minor contribution 
to the target get their weights reduced and may become closer to zero. In lasso 
regression, the features with smaller weights get dropped altogether. Lasso is good 
for feature selection when some features alone have relatively high weights.



361

Fig. 11.6  Regularization in 
polynomial regression

11.3.1  Ridge Regression

Ridge regression is a regularization technique used in linear models. It is also 
called ‘L2 regularization’. Ridge regression uses a loss function with an added 
term for regularization—the ‘penalty’.

Ridge regression solves the minimization of the least squares with L2 penalty 
added. The objective of Ridge regression may be stated as

where

MSE   is the mean squared error in prediction (see Eq. 11.2),
X {Xi … Xk}   is a set of k features,
Wi’s   are the coefficients of Xi’s, and
α,   the multiplication factor which determines the learning rate.

It may be noted that ‘α’ is one of the model hyperparameters determined manu-
ally during the learning process (0 < α < ∞).

L2 Penalty =

k∑

i=1

W2
i = W2

1 +W2
2 + · · · +W2

k

Minimize (Loss Function + α ∗ L2 Penalty).

Minimize (Mean Squared Error + α ∗ sum of the square of coefficients)

Minimize [MSE (y, f(W,X))+ α

k∑

i=1

W
2
i
]

11.3 Regularization for Smoothening



362 11 Machine Learning

11.3.2  Lasso Regression

The Lasso regression is another regularization technique used in linear models. 
Lasso stands for Least Absolute Shrinkage and Selection Operator. It is also called 
‘L1 regularization’. Like ridge regression, the lasso regression uses a loss function 
with an added term for regularization—the ‘L1 penalty’.

The lasso regression can result in some of the coefficients becoming zero leading 
to feature reduction. In other words, lasso regression helps in feature selection, as 
well as the reduction of overfitting. For large datasets with numerous features, it 
is challenging to use stepwise regression or other methods for feature reduction. 
In this context, lasso’s feature reduction ability is considered particularly useful in 
certain applications. The objective of lasso regression can be stated as

where

MSE   is the mean squared error in prediction (see Eq. 11.2),
X {Xi … Xk}   is a set of k features,
Wi’s   are the coefficients of Xi’s, and
α,   the multiplication factor which determines the learning rate.

11.3.3  Elastic Net Regression

Suppose a combination of L1 regularization (Lasso) and L2 regularization 
(Ridge) is introduced as penalty in the minimization function, the combo is called 
elastic net regularization. Elastic net is useful when multiple features are corre-
lated with one another. The lasso penalty helps to drop some of those highly cor-
related features. Ridge regression gives stability under rotation. The objective of 
elastic net regression can be stated as

L1 Penalty =

k∑

i=1

|Wi| = |W1| + |W2| + · · · + |Wk|

Minimize (Loss Function + α ∗ L1 Penalty).

Minimize (Mean Squared Error + α ∗ sum of the absolute value of the coefficients)

Minimize [MSE (y, f(w,X))+ α

k∑

i=1

|Wi|]

Minimize (Loss Function + α1 ∗ L1Penalty+ α2 ∗ L2 Penalty).

Minimize [MSE (y, f(W,X))+ α1

k∑

i=1

|Wi| + α2

k∑

i=1

w2
i ]



363

where

MSE   is the mean squared error in prediction (see Eq. 11.2),
X {Xi … Xk}   is a set of k features,
Wi’s   are the coefficients of Xi’s,
α1 = L1 Ratio    penalty term}, and
α2 = (1 − L1 Ratio)   {penalty term}.

Tutorial 11.3    Regression: Regularization

Using the diamonds dataset, we will demonstrate regularization.
First do Data Setup as in Tutorial 11.2.1 Data Setup for Regressor

Tutorial 11.3.1 Ridge Regression: (L2 Regularization)

import numpy as np
Import Ridge (linear regression model with L2 penalty)
from sklearn.linear_model import Ridge

regressor = Ridge(alpha=0.5)
model = regressor.fit(Xz, y)
model.score(Xz,y) # 0.907
np.round(model.intercept_,1) # 3932.8
np.round(model.coef_,1)
[5091.5, -134.8, -548.9, -826.6, -114.2, -59.8, -983 , 49.8, -20.9]

Inference: 
Ridge regression model coefficients are listed above. The score is 0.907 (same 
as SGD).

Tutorial 11.3.2 Lasso Regression: (L1 Regularization)

First, do Data Setup as in Tutorial 11.2.1 Data Setup for Regressor
 
import numpy as np

Import Lasso (linear regression model with L1 penalty)
from sklearn.linear_model import Lasso

regressor = Lasso(alpha=0.5) 
model = regressor.fit(Xz, y)
model.score(Xz,y) # 0.907
np.round(model.intercept_,1) # 3932.8
np.round(model.coef_,1)

[5070.7, -134.7, -548, -826.7, -112.9, -59.2, -946.5, 30.7, -18.3]

Inference:
Lasso regression model coefficients are listed above. The score is 0.907 (same 
as SGD Regression and Ridge Regression).

11.3 Regularization for Smoothening



364 11 Machine Learning

11.4  Classification

As discussed earlier, regression and classification come under supervised learn-
ing methods. Whereas the outcome variable in the regression is continuous, the 
outcome in classification is a set of discrete values (corresponding to category 
labels). As we discussed in the regression case, the following also holds good in 
classification.

• The learning method—gradient descent or its variants.
• Regularization techniques (L1, L2, elastic net …) to reduce model complexity 

and prevent overfitting.

However, the major difference occurs in selecting classifiers and respective 
loss functions. Recall our discussion on classification methods in Chap. 6. We dis-
cussed linear classifiers such as logistic regression and linear discriminant anal-
ysis (LDA). We also discussed some nonlinear classifiers, such as support vector 
machine (SVM) and decision tree induction.

The loss function quantifies the disparity between a model’s predicted and 
actual output. Throughout the training process, the goal is to reduce this loss, i.e., 
minimizing the prediction error. Common loss functions used in classification 
problems include binary cross entropy (log Loss) for binary classification prob-
lems, categorical cross entropy used in multi-class classification problems, and 
hinge loss used in Support Vector Machines (SVMs).

Binary Cross Entropy for Binary Classification

Binary cross-entropy loss is used for binary classification problems where the tar-
get variable has only two classes. It measures the difference between the predicted 
and the actual probability of positive classes. Binary cross entropy is also called 
log loss or logistic regression loss function) for binary classification (Han et al. 
2014).

Assume we have ‘n’ objects to be classified into two classes {1, 0}.
Binary cross entropy or log loss for binary classification = 

where

yi     is the label {1 or 0} of the object to be classified,
pi     is the predicted probability of yi belonging to class 1,
∴ (1 − pi)     is the probability of yi belonging to class 0,
n     is the sample size.

−
1

n

n∑

i=1

[yilog
(
pi
)
+ (1− yi)log(1− pi)]

http://dx.doi.org/10.1007/978-981-99-0353-5_6


365

Categorical Cross Entropy for Multi-class Classification

Assume we have ‘n’ objects to be classified into c classes {1 … m}. We can 
extend the formula for binary classification to include all the ‘m’ classes as shown 
below:

Categorical cross-entropy loss for multi-class classification = 
Sum of (binary cross entropy or log loss) over all the class labels c = {1 … m}  

Hinge Loss (SVM)

Hinge loss is used in Support Vector Machine (SVM) classification problems. It 
measures the difference between the predicted and true scores of the positive class. 
The formula for hinge loss is

where

y     is the true label (either +1 or −1),
f(x)     is the predicted score for the input x,
max (0, …)     implies that the loss is 0, if the true label and predicted score have 

the same sign; otherwise, it is the difference between them.

11.4.1  Regularization in Classification

The primary objective of regularization is to strike a balance between fitting the 
training data well (minimizing training error) and ensuring the model’s ability to 
generalize effectively to new, unseen data (minimizing test error). Without regular-
ization, models tend to become overly complex, capturing the noise in the training 
data, making them less effective in identifying the underlying parameters or patterns.

Regularization techniques help to reduce overfitting. Section 11.3 discussed 
ridge, lasso, and elastic net regression. L1 regularization (Lasso) introduces a pen-
alty to the loss function as a fraction of the sum of the absolute values of the coef-
ficients. It promotes feature selection by driving certain coefficients to absolute 
zero. L1 regularization is valuable when we suspect only a subset of features is 
relevant. L2 regularization (ridge) imposes a penalty by adding a fraction of the 
sum of the squares of the coefficients to the loss function. It tends to shrink the 
coefficients to zero without forcing them to become precisely zero. L2 regulari-
zation is effective when we believe all the features contribute meaningfully to the 
model’s performance. The Tutorials 11.4.1  and 11.4.2 demonstrate regularization 
techniques applied to classification problems.

= −
1

n

m∑

c=1

n∑

i=1

[yilog
(
pi
)
+ (1− yi)log(1− pi)]

Hinge Loss = max(0, 1− y ∗ f(x)),

11.4 Classification



366 11 Machine Learning

Tutorial 11.4    Linear Classification using Ridge and Lasso Regressors 

Tutorial 11.4.1 Classification Data Setup | Price -> 3 categories

import seaborn as sb
d = sb.load_dataset('diamonds')
d = d.dropna()

Creating a categorical variable pCat - three categories of price - 0 (low), 
1 (medium), 2 (high)

import numpy as np
import pandas as pd
d['pCat'] = np.zeros(d.shape[0])
for i in  d.index:
    if    d.loc[i, 'price'] < 2000: d.loc[i, 'pCat'] = 0
    elif  d.loc[i, 'price'] < 8000: d.loc[i, 'pCat'] = 1  
    else: d.loc[i, 'pCat'] = 2

Create DataFrame X that consists of feature variables
X = d[['carat', 'depth', 'table', 'x', 'y', 'z']]

Create DataFrame y for class labels (pCat =0,1,2)
y = d.pCat

Tutorial 11.4.2 Linear Classification using Ridge Regressor

Do Data Setup as in Tutorial 11.4.1 Classification Data Setup | Price -> 3 
categories

Standardize features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
Xz = scaler.fit_transform(X)

Setup classifier with L2 regularization (Ridge regression). In L2 Regulariza-
tion, we try to minimise RSS + α ΣWj^2

from sklearn.linear_model import RidgeCV
classifier = RidgeCV()

Fit the classifier
model = classifier.fit(Xz, y)

View the results
model.alpha_        # 0.1
model.score(Xz,y)   # 0.807
np.round(model.coef_,3)

0.087,    0.009,  -0.011, 0.484, 0.049, 0.018
'carat', 'depth', 'table',  'x',   'y',   'z'

Rank: x, carat, y, z, depth, table



367

Inference:
The Model score is 0.807. The model coefficients are listed. The features are 
ranked by their order of importance - x, carat, y, z, depth, table

Tutorial 11.4.3 Linear Classification using Lasso Regressor

Do Data Setup as in Tutorial 11.4.1 Classification Data Setup | Price -> 3 
categories

Standardize features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
Xz = scaler.fit_transform(X)

Setup classifier with Lasso regression regulariser. In lasso regularization, 
we try to minimise RSS + α ΣWj.

from sklearn.linear_model import Lasso
classifier = Lasso(alpha=0.5)

Fit the linear classifier
model = classifier.fit(Xz, y)

View coefficients
model.alpha   # 0.5
model.score(Xz,y)   # 0.2996
np.round(model.coef_,3) 

[0.    , 0.     , 0.     , 0.131, 0.   ,    0.   ])
'carat', 'depth', 'table',   'x',   'y',   'z'

Inference:
The Model score is 0.299 (very low). The model coefficients are listed. 
Only one variable emerges – x. All the features except 'x' stand eliminated! 
It may be noted that Lasso Regularization is useful in variable reduction 

when the number of variables is very large

11.4.2  Stochastic Gradient Descent Classifier

Section 11.2 discussed the gradient descent optimization technique and its sub-
categories—batch, mini-batch, and stochastic gradient descent. We understand 
that gradient descent is an iterative optimization technique for finding the local 
minimum of a differentiable function. This is achieved by adjusting the weights 
(coefficients) to optimize a cost (loss) function. We also saw that stochastic gradi-
ent descent (SGD) is a subcategory of the gradient descent optimization method, 
where training samples are picked up one at a time, at random (sample size = 1).

11.4 Classification



368 11 Machine Learning

SGD requires hyperparameters such as the regularization method (L2, elas-
tic net); α; the number of epochs. To get good results, shuffle the training data 
before starting any epoch. SGD is sensitive to feature scaling. In general, features 
are standardized before use. With standardization, SGD converges in much fewer 
iterations.

scikit-learn Parameters for Stochastic Gradient Descent Classifier

Please note that the parameters for SGD regression and SGD classification differ. 
Some of the parameters applicable for classification are mentioned below. They 
are for information only. You may skip this section altogether. Those who want to 
learn about SGD parameters may refer to scikit-learn documentation.

The loss function (‘loss’ parameter) takes the default value of ‘hinge’ in clas-
sification. The loss functions allowed are ‘hinge’ for linear SVM; ‘log’ for logis-
tic regression; ‘modified_huber’ for smooth loss that brings tolerance to outliers 
and estimates; ‘squared_hinge’ which is hinge with squared loss; and ‘perceptron’ 
which is the linear loss used by the perceptron algorithm. Regression loss func-
tions can also be used, where appropriate. This includes ‘squared_error’ for ordi-
nary least squares; ‘huber’, a modification of ‘squared_error’, to reduce the impact 
of outliers; ‘epsilon_insensitive’ for linear SVM regression; and ‘epsilon_insensi-
tive’ which ignores errors less than epsilon.

The parameter ‘alpha’ indicates the regularization rate or the multiplication fac-
tor in the regularization term. The learning rate could be independent or related to 
the alpha parameter. The parameter alpha defaults to 0.0001. The parameter ‘pen-
alty’ refers to the regularization method (see next section). The possible values are 
{‘l2’ for ridge regression, ‘l1’ for lasso regression, and ‘elasticnet’ for a combina-
tion of the two}. ‘l1_ratio’ is used only if the penalty is ‘elasticnet’; the default 
value is 0.15, which implies 15% lasso and 84% ridge.

The parameter ‘max_iter’ is the number of epochs and it defaults to 1000. The 
‘shuffle’ parameter indicates whether to shuffle training data after each epoch. It 
defaults to True. ‘epsilon’ is the tolerance in the prediction. It defaults to 0.1.

Multiple parameters affect early stopping. Convergence is checked against the 
training or validation loss depending on several parameters. If there is no change 
in performance, training will stop. The parameters include early_stopping, valida-
tion_fraction, n_iter_no_change, ‘tol’ (tolerance).

Tutorial 11.4.4    Classification: Stochastic Gradient Descent

Using the diamonds dataset, build a classification model to predict diamond 
price category using Stochastic gradient descent. 
Note that SGD Classifier is sensitive to scale. With standardization, SGD 
converges in much fewer iterations.

Do Data Setup as in Tutorial 11.4.1 Classification Data Setup | Price -> 3 
categories



369

from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score, f1_score

SGD Classifier is sensitive to scale. Without standardization, SGD needs too 
many iterations to converge. However, with standardization, SGD converges in 
fewer iterations
Standardize the features

Xz = StandardScaler().fit_transform(X)
Test - Train Split - 80% data for training, 20% for test

X_train, X_test, y_train, y_test = train_test_split(
         Xz, y, train_size= 0.8, random_state=1)  

Import SGD Classifier
from sklearn.linear_model import SGDClassifier

Setup SGDclssifier
classifier = SGDClassifier(alpha=0.001,
             loss="hinge",
             penalty="l2",
             max_iter=20) 
model = classifier.fit(X_train,y_train) # Train the model 

Predict the class using the model 
y_predicted = model.predict(X_test) 

Generate Confusion report 
report = confusion_matrix(y_test, y_predicted) 
print(report) 

[[4513  185    0]
 [ 235 4193  154]
 [   0  393 1115]]
ac = accuracy_score(y_test,y_predicted) 
f1 = f1_score(y_test,y_predicted, average = 'weighted')
print('accuracy =', round(ac,4),'; wtd. f1 score =', round(f1,4))

accuracy = 0.91 ; wtd. f1 score = 0.91

model.n_iter_      # 11
model.get_params() # model parameters
{'alpha': 0.001,
 'average': False,
 'class_weight': None,
 'early_stopping': False,
 'epsilon': 0.1,
 'eta0': 0.0,

11.4 Classification



370 11 Machine Learning

 'fit_intercept': True,
 'l1_ratio': 0.15,
 'learning_rate': 'optimal',
 'loss': 'hinge',
 'max_iter': 20,
 'n_iter_no_change': 5,
 'n_jobs': None,
 'penalty': 'l2',
 'power_t': 0.5,
 'random_state': None,
 'shuffle': True,
 'tol': 0.001,
 'validation_fraction': 0.1,
 'verbose': 0,
 'warm_start': False}

Observation:
SGD method parameters and model coefficients are listed above. Hinge Loss with 
elastic net regularization was used. (SGD converged in 11 iterations. F1 
Score is 0.91. For more information on parameters, refer to https://scikit-
learn.org/stable/modules/sgd.html

11.5  Cross-Validation

Resampling is an iterative process of assessing a machine learning model’s 
performance and generalizability and identifying issues like overfitting or 
underfitting. Resampling techniques involve drawing multiple samples, at random, 
from the available data, and exploring the model performance. Resampling tech-
niques are computationally expensive and reuse the available sample to make sta-
tistical inferences. However, they are helpful when the training dataset is small. 
Two common resampling techniques are discussed in this section.

• Cross-validation.
• Bootstrapping.

Cross-Validation

The K-fold cross-validation generally divides the entire dataset into k subsets at 
random. We do k training sessions. In each session, we use one subset as the test 
sample, while the other k − 1 subsets are combined to form the training sample 
(see Table 11.1). The steps involved in cross-validation are shown below:

• Split the data into K roughly equal-sized parts.
• Designate the kth part as the test sample.
• Estimate the model using the other K − 1 part (training sample).



371

Table 11.1  Cross-validation splits

Table 11.2  Bootstrap splits

• Calculate its prediction error on the test sample (which was left out).
• Do the above K times and combine (usually average) the K estimates of predic-

tion error.

If K = n, the number of instances in the data, it is called leave-one-out cross-vali-
dation. Note that the test dataset will have one data instance, while the rest is used 
for training. Stratified cross-validation is another variation. In this method, each 
fold is created in such a way that it maintains the same class distribution as the 
original dataset. For example, in a binary classification problem in which 20% of 
samples belong to class A and 80% to class B, each fold in stratified cross-valida-
tion will also be constituted with a similar class distribution.

Some of the objectives of cross-validation are listed below:

• Cross-validation is used to estimate prediction error (or the model 
performance).

• Cross-validation results in k-models. The researcher may choose a model based 
on a criterion such as the median performance. The goal is to select a model 
that performs well on average, across all folds, and is less likely to overfit to a 
single data split.

• It sometimes limits the number of feature variables to a relevant few. We can 
analyze the importance of features by observing how the model’s performance 
changes when different subsets of features are used during each fold.

Bootstrap

Bootstrap resamples at random, with replacement. See Table 11.2. Since we draw 
data with replacement, a bootstrapped dataset may contain multiple instances of 

11.5 Cross-Validation



372 11 Machine Learning

the same original cases (e.g., 9 and 14) and completely omit other original cases 
(e.g., 19 and 23). However, from a statistical perspective, this method is consid-
ered superior.

Though they appear similar, bootstrapping is primarily used for statistical infer-
ence and assessing the uncertainty of population parameter estimates. In contrast, 
cross-validation is primarily used in machine learning to evaluate and compare the 
performance of predictive models.

Tutorial 11.5.1    Regression: k-fold Cross-validation

We demonstrate k-fold cross-validation of the diamond price (y) prediction 
model. Features (X), viz., 'carat', 'cut', 'color', 'clarity', 'depth', 
'table', 'x', 'y', 'z'. The dataset diamonds is described in Chapter 1.
Note: - The following parameters are important for fine-tuning and configuring 
the cross-validation process for model evaluation.
1. The parameter n_splits determines how many subsets or “folds” the dataset 
will be split into during cross-validation. 
2. If Shuffle is set to `True`, the dataset will be shuffled before creating 
the folds. This can help reduce inherent bias in data by way of order or 
structure. 
3. Setting the random state to an integer value ensures that the random  
processes involved in shuffling or other operations are reproducible. Using  
the same random_state value will yield the same results in each run. 

Do Data Setup as in Tutorial 11.2.1 Data Setup for Regressor

from sklearn import linear_model
from sklearn.model_selection import cross_validate, KFold

regressor = linear_model.LinearRegression()

K-fold Cross Validation
KF = KFold(n_splits=5, shuffle=True, random_state=1)
CV_results = cross_validate(regressor, Xz, y, cv=KF, return_estimator=True)

np.round(CV_results['test_score'],3) 
[0.909, 0.904, 0.905, 0.909, 0.907]

np.median(CV_results['test_score'])  # 0.907
CV_results['test_score'].max()       # 0.909

for model in CV_results['estimator']:
    print(np.round(model.coef_,1))

carat         cuti  colori  clarity   depth  table      x      y      z
[5e+03 -1.3e+02 -5.4e+02 -8.2e+02 -1.0e+02 -5.5e+01 -9.3e+02 3.4e+01 -3.7]
[5e+03 -1.3e+02 -5.5e+02 -8.3e+02 -1.1e+02 -6.5e+01 -9.7e+02 3.3e+01 -2.2]
[5155.1  -136.9  -550.4  -821.9  -119.3  -57.4  -1192.4  198.8  -19.0]
[5101.4  -139.6  -554.8  -826.5  -105.0  -55.5   -915.7   57.0 -105.8]
[5074.2  -130.1  -540.8  -824.7  -114.6  -64.0   -948.9   45.7  -42.7]



373

Inference:
The coefficient estimates from each of the 5 splits are shown above. Here, the 
5th model, score 0.907, has a median score. The coefficients are:- 
[5074.2, -130.1, -540.8, -824.7, -114.6, -64.0, -948.9, 45.7, -42.7]
Cross-validation is used to compare the performance of different models and 
their ability to generalize (how accurately the model performs on unknown 
data)

Tutorial 11.5.2    Classification: cross_val_score method

We demonstrate k-fold cross-validation of the diamond price (y) prediction 
model. Features (X), viz., 'carat', 'cut', 'color', 'clarity', 'depth', 
'table', 'x', 'y', 'z'. The dataset diamonds is described in Chapter 1.

Do Data Setup as in Tutorial 11.4.1 Classification Data Setup | Price -> 3 
categories

from sklearn.model_selection import KFold, cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

Import the classifier 'LogisticRegression'
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()

Setup a pipeline with two steps (1) standardization and (2) classification
pipeline = make_pipeline(StandardScaler(), classifier)

Setup k-Fold cross-validation
KF = KFold(n_splits=10, shuffle=True, random_state=1)

Conduct k-fold cross-validation
CV_results = cross_val_score(
      pipeline,  # Pipeline
      X,         # DataFrame of feature variables
      y,         # DataFrame of Class Labels 
      cv = KF,   # Cross Validation Technique
      scoring = "accuracy", # Loss function
      n_jobs=-1  # Use all CPU scores
      ) 

for acc in CV_results: print(np.round(acc,3))
# 0.91  0.912  0.907  0.912  0.902  0.906  0.911  0.91  0.907  0.911

# Calculate mean accuracy
print(CV_results.mean()) # 0.909 

11.5 Cross-Validation



374 11 Machine Learning

Inference:
Data Standardization helps in fast convergence. This is explained in a sub-
sequent tutorial 
The median score may be usually considered a classification model’s expected 
accuracy. In this case, it is 0.909.
Cross-validation is used to compare the performance of different models and 
their ability to generalize (how accurately the model performs on unknown 
data)

Tutorial 11.5.3    Classification: cross_validate method

We are demonstrating k-fold cross-validation to classify diamond price (y) 
from its features (X), 'carat', 'depth', 'table', 'x', 'y', 'z' using the 
cross_validate method.
In this method, if the parameter return_estimator  is set to ‘True’, the 
classifier’s coefficients will be returned 

Classification: without standardization

Do Data Setup as in Tutorial 11.4.1 Classification Data Setup | Price -> 3 
categories

from sklearn.model_selection import cross_validate
import numpy as np

Import the classifier 'LogisticRegression'
from sklearn import datasets, linear_model
classifier = linear_model.LogisticRegression(
    tol=0.01, max_iter = 500)

Perform 5-fold cross-validation, with return_estimator=True
CV_results = cross_validate(classifier, 
             X,
             y, 
             cv=5,
             return_estimator=True)

Warning: 
The program execution might have taken long time or ended prematurely. Data 
Standardization helps in fast convergence. This is illustrated in the fol-
lowing tutorial

sorted(CV_results.keys())
# ['estimator', 'fit_time', 'score_time', 'test_score']

np.round(CV_results['test_score'],3)
# [0.902, 0.937, 0.956, 0.841, 0.846]

Get the 5 estimators
for model in CV_results['estimator']: 
    print(np.round(model.coef_,1))



375

The Model Parameters from the first Cross-Validation 
There are three discriminant functions, as there are three classes
Six features ['carat', 'depth', 'table', 'x', 'y', 'z']]
Their coefficients are shown along with

[[-11.    0.2   0.1   0.3  -2.3  -0.1]
 [  3.2   0.    0.   -0.4   0.4  -0.1]
 [  7.8  -0.2  -0.2   0.1   1.9   0.1]]

The Model Parameters from the second Cross Validation 
[[-11.2   0.1   0.1   0.5  -2.6  -0.1]
 [  3.3  -0.    0.   -0.1   0.5  -0.1]
 [  7.9  -0.1  -0.2  -0.4   2.2   0.2]]

The Model Parameters from the second Cross-Validation 
[[-10.7   0.2   0.2  -0.3  -2.1  -0. ]
 [  3.6  -0.    0.   -0.5   0.7  -0. ]
 [  7.1  -0.2  -0.2   0.8   1.4   0. ]]

The Model Parameters from the third Cross Validation 
[[-10.5   0.2   0.2   0.1  -2.8  -0.1]
 [  1.8  -0.    0.   -0.4   0.8  -0.1]
 [  8.6  -0.2  -0.2   0.2   2.    0.2]]

The Model Parameters from the fourth Cross Validation 
[[-10.2   0.3   0.2   0.3  -4.5  -0.7]
 [  4.7  -0.   -0.    1.2  -0.4  -0.7]
 [  5.5  -0.3  -0.2  -1.5   4.9   1.4]]

The Model Parameters from the fifth Cross Validation 
[[-7.073  0.316  0.372  1.104 -4.227 -0.721]
 [ 4.063 -0.181 -0.042 -0.175 -1.285  0.191]
 [ 3.01  -0.135 -0.33  -0.929  5.512  0.53 ]]

Warning: 
The program execution might have ended prematurely. Data Standardization 
helps in fast convergence. See the next tutorial

Inference:
The Model Parameters from the five cross-validations are listed. The scores 
are [0.902, 0.937, 0.956, 0.841, 0.846]. The median score may be taken as the 
estimate of model performance. 
Each CV has three discriminant functions. There are six features ['carat', 
'depth', 'table', 'x', 'y', 'z']]. 

Classification: with Standardization 

Do Data Setup as in Tutorial 11.4.1 (Price->3 Categories)

from sklearn.model_selection import cross_validate
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

11.5 Cross-Validation



376 11 Machine Learning

Import the classifier ‘LogisticRegression’
from sklearn import linear_model
classifier = linear_model.LogisticRegression(tol=0.01, max_iter = 500)

Setup a pipeline with two steps (a) standardize X (b) then run the classifier
pipeline = make_pipeline(StandardScaler(), classifier)

Perform 5-fold cross validation
CV_results = cross_validate(pipeline, 
             X,
             y, 
             cv=5,
             return_estimator=True)

sorted(CV_results.keys())
# ['estimator', 'fit_time', 'score_time', 'test_score']
np.round(CV_results['test_score'],3)
# [0.901, 0.937, 0.956, 0.842, 0.849]

Get the 5 estimators
for model in CV_results['estimator']: 
    print(np.round(model[1].coef_,3))

Inference:
Data Standardization helps in fast convergence. Therefore, unlike the previ-
ous tutorial, this one completed normally.
The Model Parameters from the five cross-validations are listed. The scores 
are [0.901, 0.937, 0.956, 0.842, 0.849]. The median score may be taken as the 
estimate of model performance. 

Each CV has three discriminant functions.

11.6  Building Robust Machine Learning Models

There are several factors that an ML engineer needs to consider in building 
robust machine learning models. The typical steps involved in the model-building 
process may be summarized as follows:

1. Data preprocessing: Address missing values, handle outliers, encode categori-
cal variables, and scale/normalize features if needed (see Sect. 2.8). Note that 
data preprocessing takes about 70% of the total effort in a typical machine 
learning project.

2. Hyperparameter tuning: Find the best combination of hyperparameters for the 
model using techniques like grid search (see Sect. 9.4) to identify the combina-
tion that yields the best performance.

http://dx.doi.org/10.1007/978-981-99-0353-5_2
http://dx.doi.org/10.1007/978-981-99-0353-5_9


377

3. Model training: Trains the model using the selected hyperparameters on the 
training dataset.

4. Ensemble methods: Improve model performance by combining multiple mod-
els like bagging (e.g., Random Forest) or boosting (e.g., AdaBoost, Gradient 
Boosting). Bagging relies on averaging or other central tendencies. Boosting 
focuses on sequential learning.

5. Cross-validation: Provides a more robust estimate of the model’s performance 
by assessing its generalization across different subsets of the data, to identify 
potential issues like overfitting (see Sect. 11.5).

6. Model evaluation: Evaluate the model’s performance. Metrics include accu-
racy, precision, recall, and F1-score (see Sect. 6.3).

7. Test set evaluation: Get a final unbiased assessment of the model’s generaliza-
tion to new, unseen data, ensuring it performs well in real-world scenarios.

8. ROC/AUC analysis: Specifically applicable to classification models, ROC/
AUC analysis provides insights into the model’s ability to discriminate 
between classes at different thresholds (see Sect. 9.5.3). This helps to study the 
trade-offs between sensitivity and specificity.

9. Bias-variance analysis: Aids in balancing model simplicity and complex-
ity, guiding decisions to avoid underfitting (high bias) or overfitting (high 
variance).

Some of the topics are covered earlier. This section covers the topics such as over-
fitting and underfitting mitigation using bias-variance trade-off, test-train conver-
gence, train-validate-split, hyperparameter tuning, ensemble methods, and ROC/
AUC Analysis.

11.6.1  Hyperparameter Tuning

In machine learning, a model is essentially a mathematical representation that 
learns patterns and relationships from data. This learning process involves adjust-
ing parameters based on the input data to make accurate predictions or classifi-
cations. However, alongside these parameters, there is another set of parameters 
known as hyperparameters.

Hyperparameters are not learned from the data. They are set manually dur-
ing the model development phase. They play a crucial role in facilitating effec-
tive model development and training. Here is a breakdown of the hyperparameters 
mentioned:

1. Train-test split ratio: Defines the proportion of the dataset used for training the 
model versus testing its performance.

2. Choice of cost or loss function: Determines how the model evaluates the differ-
ence between its predictions and the actual values. Examples include absolute 
error, square error, Huber loss, cross entropy, log loss, exponential loss, and 
hinge loss.

11.6 Building Robust Machine Learning Models

http://dx.doi.org/10.1007/978-981-99-0353-5_6
http://dx.doi.org/10.1007/978-981-99-0353-5_9


378 11 Machine Learning

3. Choice of optimization algorithm: Dictates how the model adjusts its param-
eters during training to minimize the defined loss function. Options include 
mini-batch gradient descent, stochastic gradient descent, Adagrad, and Adam, 
among others.

4. Number of iterations (epochs) in training: Specifies the number of times the 
entire dataset is passed forward and backward through the machine learning 
model during training.

5. Learning rate in optimization algorithms: A crucial hyperparameter that con-
trols the size of steps taken during the optimization process. It influences how 
quickly or slowly a model learns.

6. Multiplication factor for regularization term (α): Relates to regularization tech-
niques, where a penalty term is added to the loss function to prevent overfitting. 
The multiplication factor (α) determines the strength of this regularization.

7. Penalty—e.g., L2 regularization: Specifies the type and strength of regulariza-
tion applied. L2 regularization penalizes large weights in the model.

8. C and σ hyperparameters for support vector machines: In the context of 
Support Vector Machines (SVM), these parameters control the trade-off 
between achieving a smooth decision boundary and classifying the training 
points correctly.

9. k in k-nearest neighbors: In the k-nearest neighbors algorithm, ‘k’ denotes the 
number of nearest neighbors to consider when making predictions.

Understanding and appropriately tuning these hyperparameters are critical for 
achieving optimal model performance and avoiding issues such as overfitting or 
underfitting. It often involves a process known as hyperparameter tuning or opti-
mization, where different combinations of hyperparameters are tested to find the 
most effective configuration for a given machine learning task.

11.6.2  Ensemble Methods

Ensemble methods involve using a set of multiple classifiers or models and 
combining their predictions to make decisions with improved accuracy and 
robustness. Ensemble deploys methods such as bagging, boosting, random for-
ests, and using different classification models. Ensemble aims at improving the 
accuracy of prediction (Han et al. 2014).

Bagging

Bagging uses resampling technique. A data sample is selected at random with 
replacement from the given dataset. An appropriate classification model is built 
based on the sample. This process of sampling and model building is repeated 
to develop k classifiers. The data object to be predicted is passed the ensemble 
of k-models. The target label predicted by the k classifiers is inspected, and the 



379

Fig. 11.7  Bagging

Fig. 11.8  Boosting

most frequent label is assigned to the new object. We can also use this method for 
regression by computing the average of the k predictions. Compared to a single 
classifier, bagging improves accuracy and is less affected by noise.

Boosting

Boosting is an improvisation of bagging. While building models m1 … mk in order 
from data samples s1 … sk, the miss-classified data is given an added weightage after 
each model building/testing. The models with higher accuracy receive higher voting 
weightage from the ensemble of emerging classifiers. Boosting accuracy is expected 
to be higher but may tend to overfit miss-classified data (Figs. 11.7 and 11.8).

11.6 Building Robust Machine Learning Models



380 11 Machine Learning

Training 
Data

Random 
Data 

Subset-1
Decision Tree 
Classifier -1

...

Random 
Data 

Subset-k
Decision Tree 
Classifier - k

Fig. 11.9  Random forest by random data sampling

Random Forest

We discussed building a decision tree classifier by ranking and selecting the attrib-
utes by their contribution to classification. Instead of building one tree, we may 
build multiple trees using the following method:

• Random data sampling: Different subsets of the training data are randomly 
selected for each decision tree. This process is known as bootstrapping.

• Feature randomness: When building each decision tree, a random subset of fea-
tures is considered at each split point. This helps in reducing the risk of overfit-
ting and decorrelates the trees.

We will pass the data object to be predicted through all the individual trees and 
choose the target label that gets the maximum votes. Such an ensemble of decision 
trees is called a random forest. It is a popular method deployed in machine learn-
ing (Figs. 11.9 and 11.10).

Hard Voting Classifier

Yet another technique is to build a set of different classification models (e.g., 
logistic regression, linear discriminant analysis, random forest, support vector 
machines). We could pass the data to be predicted through all these classifiers and 
choose the target label that gets the maximum votes. This is called a hard voting 
classifier (Fig. 11.11).



381

A�ributes

Random 
A�ribute 
Subset-1

Decision Tree 
Classifier - 1

Training Data

Random 
A�ribute 
Subset-k

Decision Tree 
Classifier - k

Fig. 11.10  Random forest by feature randomness

Training 
Data (D)

Classifier  
Method -1

Classifier 
Method - 2 ... Classifier 

Method - k

Fig. 11.11  Hard voting

11.6.3  Bias-Variance Trade-Off

The error in a model’s prediction comprises three constituents—noise, bias, and 
variance. Noise is the unexplainable error resulting from data collection errors, 
outliers, and unknown features. Bias happens when simple assumptions are made 
by a model, whereas the actual mapping of features to target is complex. For 
example, proposing a linear model while the underlying distribution is quadratic 
or of a higher degree polynomial. A high bias may result in an underfit model. 
Examples of high-bias models include linear regression, logistic regression, 
and linear discriminant analysis. These models are fast to learn but they are less 

11.6 Building Robust Machine Learning Models



382 11 Machine Learning

Fig. 11.12  Train-test convergence

flexible. Examples of low-bias models include decision trees, k-nearest neighbors, 
and support vector machines.

Variance refers to the responsiveness to fluctuations in the data. Models with 
intricate structures, like higher degree polynomials, often exhibit elevated var-
iance, which can arise from random noise in the training dataset. Generally, 
nonlinear models such as decision trees, k-nearest neighbors, and support vec-
tor machines possess heightened flexibility and variance, leading to overfitting. 
Conversely, models characterized by low variance, such as linear regression, logis-
tic regression, and linear discriminant analysis, tend to be less susceptible to over-
fitting. To mitigate overfitting, one strategy involves regularization, which entails 
smoothing or constraining the model. For instance, reducing the degree of varia-
bles (see Fig. 11.6) is a regularization approach in polynomial models. In linear 
models, regularization can be accomplished by imposing weight constraints using 
ridge regression, lasso regression, and elastic net techniques.

Augmenting a model’s complexity typically increases its variance while dimin-
ishing its bias. Conversely, decreasing complexity heightens bias and diminishes 
variance. Striking a balance between the two is crucial, and the subsequent section 
explores one of the solutions to achieve this trade-off. Figure 11.7 illustrates this 
idea.

11.6.4  Train-Test Convergence

This is an approach to ensure that the model can generalize well to new, unseen 
data, ensuring the model’s reliability and effectiveness. We divide the dataset ran-
domly into two—a large training dataset (consisting of 80% of the data) and a 
smaller test dataset consisting of the rest. The model built from the training data-
set is tested on the test dataset. The training and test performances are compared, 
using a measure such as ‘loss’ or ‘accuracy’ (Fig. 11.12).



383

If the model performs well on the training data but poorly on the testing data, 
it suggests overfitting, which means the model has learned to fit the training data 
too closely and may not generalize well to new, unseen data. To achieve test-train 
convergence, we use techniques like cross-validation, regularization, early stop-
ping, and careful hyperparameter tuning to find the right balance between model 
complexity and generalization. The idea is to avoid overfitting and ensure that the 
model’s performance remains consistent between the training and testing phases. 
We repeat the train-test iterations to achieve convergence in training and test per-
formances. In other words, convergence happens after multiple epochs, as seen in 
Fig. 11.7.

11.6.5  Train, Validate, Test Split

We may divide the sample data during training into three datasets—train, val-
idate, and test. See Fig. 11.8. The process of train-validate-test is repeated for 
the convergence of performance. This systematic approach evaluates how well a 
model is likely to perform on new, unseen data. Let’s delve into the distinct phases 
of this process:

1. Training phase: Here, the model acquires knowledge from the training dataset. 
The training data serves as the primary set for refining the model’s weights and 
biases through various algorithms, enabling it to grasp patterns and relation-
ships within the data.

2. Validation phase: Utilizing a subset known as validation data, this phase fine-
tunes the model’s hyperparameters. Hyperparameters, essential for controlling 
the learning process, are configuration settings distinct from data-driven param-
eters. By employing a separate validation set, adjustments can be made to 
enhance the model’s performance without succumbing to overfitting.

3. Test phase: Following training and fine-tuning, it is imperative to evaluate the 
model on entirely new data to assess its generalization capabilities. The test 
data, an unbiased measure of final performance, is used to apply the model and 
gauge its effectiveness.

The entire training, validation, and testing process is often iteratively repeated 
until the model reaches a satisfactory level of performance. This iterative nature 
allows for dynamic adjustments, such as modifying hyperparameters or incorporat-
ing additional data, to improve the overall effectiveness of the model (Fig. 11.13).

Post-evaluation, the model is applied to real-world data for practical use. This 
may involve tasks such as product recommendations, fraud detection, medical 
diagnosis, or autonomous decision-making in driving. Continuous monitoring of 
the model’s performance in real-world scenarios is critical for its sustained effec-
tiveness. As real-world data distributions evolve over time, models may need 
periodic updates or retraining. Continuous monitoring ensures the model remains 
effective and relevant in dynamic environments.

11.6 Building Robust Machine Learning Models



384 11 Machine Learning

Fig. 11.14  ROC/AUC analysis

Fig. 11.13  Train, validate, test

In essence, the train-validate-test approach systematically develops machine 
learning models capable of generalizing new data. It ensures the model not only 
learns from training data but also undergoes fine-tuning and validation before prac-
tical deployment. The iterative nature of the process allows for ongoing adjustments, 
ensuring the model’s adaptability and effectiveness in dynamic, real-world conditions.

11.6.6  Receiver Operating Characteristic: ROC/AUC 
Analysis

Receiver Operating Characteristic (ROC) analysis is commonly used with 
logistic regression models, especially in binary classification problems. In binary 
logistic regression, the model outputs probabilities that an observation belongs 
to the positive class. Observations with probabilities greater than or equal to 0.5 
(threshold) are classified as positive, and those below 0.5 are classified as negative. 
ROC analysis involves changing the classification threshold to produce a range of 
true positive rates (sensitivity) and false positive rates (1 - specificity). The ROC 
curve is a graphical representation of this trade-off, where each point on the curve 
represents a different threshold. The Area Under the ROC Curve (AUC-ROC) 
is a scalar metric that summarizes the model’s performance across all possible 
thresholds. It ranges from 0 to 1, with higher values indicating better discrimina-
tion between the positive and negative classes. Figure 11.14 illustrates ROC/AUC, 
comparing the performance of three classifiers on an arbitrary set of data.



385

ROC/AUC analysis can also be extended to other classification problems. An 
illustration of an example where ROC/AUC analysis is extended to survival analy-
sis is shown in Sect. 9.5.3.

Data Analytics in Action

A typical machine learning application: YouTube advertisements (Zappin 
et al. 2021)
Digital marketing refers to advertising campaigns on electronic gadgets, 
e.g., online videos, social media posts. It is more cost-effective and targeted 
than traditional marketing such as magazine ads, billboards, direct mail, 
and TV. YouTube has billions of users, and billions of hours of video are 
watched daily. Internet censorship refers to the control or suppression of 
publication or access of information enacted by Internet regulators. YouTube 
censors content using three primary methods—content removal, channel 
removal, and demonetization. In demonetization, the content creators are 
denied paid ads in their YouTube videos. Companies are more sensitive to 
the type of content to which they tie their ads. YouTube’s censorship algo-
rithm is not public.
The paper mentioned above proposes a methodology that employs four 
machine learning algorithms, i.e., C 4.5, Random Forest, Linear Regression, 
and Support Vector Machine, to predict if changes in the meta-data of the 
YouTube video will lead to censorship.

Summary

While humans learn from experience, machines learn from data and improve 
accuracy over time, without being programmed to do so. Machine learning 
involves identifying the correct model parameters that optimize the predictive 
capability and deriving information from available data. The machine learning 
process can be broadly categorized as supervised, unsupervised, semi-supervised, 
and reinforcement learning.

In supervised learning, the sample data consists of input features and the 
desired outputs (targets). The data sample is divided into two sets—the training 
dataset and the test dataset. The training dataset is used to train algorithms such 
as linear discriminant analysis, decision trees, and support vector machines. The 
model is then tested over the test dataset. The train-test process is repeated till an 
accurate model emerges. Algorithms for classification are trained to predict cat-
egorical class labels (nominal or ordinal). Regression algorithms are continu-
ous-valued functions trained to predict numeric values (real numbers).

Summary

http://dx.doi.org/10.1007/978-981-99-0353-5_9


386 11 Machine Learning

An exhaustive algebraic solution for optimization is computationally prohibi-
tive with large data. An alternative is to use an iterative solution, giving due con-
sideration to model fit. Gradient descent is an iterative optimization technique for 
finding the local minimum of a differentiable function. This technique can be used 
to find the model parameters (coefficients) that optimize a specified cost function. 
Variations include stochastic gradient decent, mini-batch gradient descent, batch 
gradient descent, Adagrad, Adam, etc.

Batch gradient descent uses each iteration’s entire dataset (size ‘n’). In 
Stochastic Gradient Descent (SGD), only one randomly selected data point is used 
per iteration from the ‘n’ available points. Mini-batch gradient descent, a compro-
mise between SGD speed and batch gradient descent’s goodness of fit, randomly 
selects a subset of ‘m’ datapoints (1 < m < n) in each iteration. It repeats the gradi-
ent descent process multiple times until a specified convergence criterion is met. 
SGD is memory efficient and converges rapidly, making it preferable for large 
datasets. While it provides a satisfactory solution quickly, it may not be optimal, 
yet it efficiently escapes local minima. The learning rate’s influence on conver-
gence speed is crucial, as too low or high rates result in slow convergence or oscil-
lations, respectively. Scaling, especially in SGD, is sensitive, making standardized 
data input a common practice. SGD finds applications in large-scale and sparse 
machine learning, particularly in tasks like text classification and natural language 
processing.

Regularization techniques, including ridge and lasso regression, aim to reduce 
model complexity and prevent overfitting. Ridge regression minimizes the L2 
norm with an added penalty, addressing multicollinearity. Lasso regression uses 
the L1 norm, adding the sum of coefficient magnitudes as a penalty, facilitating 
feature elimination. Elastic net regularization combines L1 and L2 regularization 
and is helpful when dealing with correlated features. These techniques contribute 
to improved model generalization and feature selection.

The components of prediction error include noise, bias, and variance. Noise, 
stemming from errors in data collection and outliers, contributes to unexplaina-
ble errors. Bias arises when a model makes simplistic assumptions about complex 
feature-to-target mappings, potentially resulting in an underfit model. High-bias 
models include linear regression, logistic regression, and linear discriminant anal-
ysis, known for speed but limited flexibility. Conversely, low-bias models offer 
more flexibility, such as decision trees, k-nearest neighbors, and support vector 
machines. Variance, representing sensitivity to data variations, is associated with 
model complexity. Complex models, like higher degree polynomials, may exhibit 
high variance, leading to overfitting. Nonlinear models such as decision trees, 
k-nearest neighbors, and support vector machines often have high flexibility and 
variance. Regularization techniques, like ridge regression and lasso regression, 
are employed to mitigate overfitting. The note emphasizes the need for a trade-off 
between model complexity and variance, advocating for an optimal balance.

Train-test convergence is an approach to ensure model generalization to new, 
unseen data. Randomly dividing the dataset into a large training set (80%) and a 
smaller test set, the model’s performance is assessed by comparing training and 



387

test results. Overfitting is identified when a model excels on training but falters 
on testing, prompting techniques like cross-validation, regularization, early stop-
ping, and hyperparameter tuning to achieve convergence. Train, validate, test split 
extends this concept by dividing sample data into three sets during training: train, 
validate, and test. The training phase focuses on learning model parameters, with 
validation data used to fine-tune hyperparameters. In the application phase, test 
data provides a final, unbiased estimate of the model’s performance in real-world 
scenarios.

Hyperparameters are manually set parameters affecting model development. 
Crucial hyperparameters include train-test split ratio, cost or loss function choice, 
optimization algorithm, number of iterations in training, learning rate, regulariza-
tion terms, and other model-specific parameters.

Ensemble methods, exemplified by techniques like bagging, boosting, and 
random forests, amalgamate multiple models to bolster accuracy and robustness. 
Bagging involves resampling, while boosting assigns increased weight to misclas-
sified data, both contributing to improved accuracy despite potential overfitting 
challenges. The receiver operating characteristic curve and the AUC-ROC metric 
offer valuable insights into a model’s ability to discriminate between classes at 
various thresholds.

Questions

Comprehension—Write Brief Notes on:

 1. Cross-validation.
 2. Bootstrapping.
 3. Resampling.
 4. Regularization.
 5. Elastic net.
 6. Mini-batch gradient descent.
 7. Train-validate-test model.
 8. Penalty versus learning rate.
 9. Loss functions used in regression.
 10. Loss functions used in classification.
 11. Gradient descent algorithm.
 12. Hyperparameter tuning.
 13. Bias-variance trade-off.

Analysis

 14. Explain the fundamental difference between supervised, unsupervised, 
semi-supervised, and reinforcement learning. Provide examples of real-world 
applications for each of these machine learning paradigms.

Questions



388 11 Machine Learning

 15. Regularization techniques like ridge regression and lasso regression are com-
monly used in linear models to prevent overfitting. Compare and contrast the 
key differences between ridge and lasso regression. In what situations would 
you choose one over the other, and why?

 16. Discuss the concept of gradient descent optimization in machine learning. 
What are the various gradient descent techniques such as stochastic gradi-
ent descent and mini-batch gradient descent? How does the choice of gra-
dient descent method impact the model’s convergence and computational 
efficiency?

 17. Explain the importance of hyperparameters in machine learning mod-
els. Please provide specific examples of hyperparameters used in different 
machine learning algorithms and describe their roles in model development 
and optimization.

 18. Resampling techniques, like K-fold cross-validation and bootstrap, are essen-
tial for assessing the performance of machine learning models. Describe how 
K-fold cross-validation works and its benefits in evaluating model perfor-
mance. In what situations would you prefer bootstrap resampling instead?

 19. Define the bias-variance trade-off in the context of machine learning mod-
els. How does increasing model complexity affect bias and variance? Provide 
practical examples of how different modeling choices can impact the bias-var-
iance trade-off in real-world applications.

 20. Discuss the data standardization process in machine learning and why it is 
essential before training certain algorithms. Provide examples of machine 
learning models that benefit significantly from data standardization and 
explain why.

 21. Ensemble methods are widely used in machine learning. Explain the concept 
of ensemble methods and provide examples of algorithms like Random Forest 
and Gradient Boosting. How do these methods improve predictive perfor-
mance, and what types of problems are they well suited?

 22. Explain the difference between bagging and boosting in the context of ensem-
ble methods. How do these methods improve prediction accuracy, and what 
are the potential drawbacks of each approach?

 23. Why must a model perform well on both the training and testing datasets 
when discussing test-train convergence? What does it indicate when a model 
performs well on the training data but poorly on the testing data?

 24. Consider the concept of train-validate-test split. Why is it necessary to have a 
separate validation dataset in addition to training and testing datasets? What is 
the purpose of each of these subsets in the machine learning process?

 25. In the context of random forests, explain how random sampling and feature 
randomness contribute to improving prediction accuracy. What are the advan-
tages of using random forests over a single decision tree?



389

Exercises

I. Regression

IMDB Movie User Ratings for Regression

The goal here is to predict user ratings based on a set of features.
IMDB database is a collection of movie data supplied by studios and fans, 

probably the biggest movie database on the web, and run by Amazon. We are con-
sidering a movie user rating database with 58,788 rows and 24 variables.

The target that we would like to predict is movie ‘rating’.
The features were selected to include most of the numeric variables. We will 

exclude non-numeric variables such as title and mpaa. We will also exclude the 
budget, which has numerous null entries.

Refer:

https://vincentarelbundock.github.io/Rdatasets/articles/data.html—ggplot2movies
DOC https://vincentarelbundock.github.io/Rdatasets/doc/ggplot2movies/movies.html
CSV https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2movies/movies.csv

Exercise 11.1 Cross-Validation
Perform regression analysis of diamond price versus features. Use the cross-vali-
dation method to predict the model performance.

Exercise 11.2 Regularization with L2 Penalty
Perform regression analysis of diamond price versus features, using L2 penalty for 
regularization.

Exercise 11.3 Regularization with L1
Perform regression analysis of diamond price versus features, using L1 penalty for 
regularization. Does this help in feature selection?

Exercise 11.4 Stochastic Gradient Descent
Perform regression analysis of diamond price versus features, using stochastic gra-
dient descent. How do the results differ from linear regression without the gradient 
descent method?

Exercise 11.5 Grid Search to Identify the Best Model Parameters
Perform regression analysis of diamond price versus features. Use grid search to 
select the best model parameters.

II. Classification

The following exercises use the iris flowers dataset.

Exercises

https://vincentarelbundock.github.io/Rdatasets/articles/data.html
https://vincentarelbundock.github.io/Rdatasets/doc/ggplot2movies/movies.html
https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2movies/movies.csv


390 11 Machine Learning

Exercise 11.7 Cross-Validation
Build a classification model for classifying iris species based on four features. Use 
the cross-validation method to predict the model accuracy.

Exercise 11.8 Regularization with L2 Penalty
Build a classification model for classifying iris species based on four features, 
using the L2 penalty for regularization.

Exercise 11.9 Regularization with the L1 Penalty for Feature Selection
Build a classification model for classifying iris species based on four features, 
using the L1 penalty for regularization. Does this help in feature selection?

Exercise 11.10 Stochastic Gradient Descent
Build a classification model for classifying iris species based on four features, 
using stochastic gradient descent. How do the results differ from the classification 
model without the gradient descent method?

Exercise 11.11 Grid Search to Identify the Best Model Parameters
Build a classification model for classifying iris species based on four features. Use 
grid search to select the best model parameters.

References

Chollet F (2019) Chollet—2018—Deep learning with Python. In: Manning, vol 53, Issue 9
Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (2019, 

O’reilly). In: Hands-on machine learning with R
Han J, Kamber M, Pei J (2014) Data mining. Concepts and techniques, 3rd edn. The Morgan 

Kaufmann series in data management systems. In: Proceedings—2013 international confer-
ence on machine intelligence research and advancement, ICMIRA 2013

Zappin A, Malik H, Shakshuki EM, Dampier DA (2021) YouTube monetization and cen-
sorship by proxy: a machine learning prospective. Procedia Comput Sci 198. https://doi.
org/10.1016/j.procs.2021.12.207

http://dx.doi.org/10.1016/j.procs.2021.12.207
http://dx.doi.org/10.1016/j.procs.2021.12.207


391

Learning Objectives

• Understand the basic concepts of artificial intelligence and artificial neural 
networks.

• Acquire familiarity with machine learning models—supervised, unsupervised, 
semi-supervised, and reinforcement learning.

• Get a detailed understanding of artificial neural network architecture, compo-
nents, concepts, and associated software frameworks.

• Discuss feed-forward neural network (FFNN) and demonstrate its application.
• Discuss convolutional neural network (CNN) and demonstrate its application.
• Understand recurrent neural networks (RNN).
• Discuss Long Short-Term Memory (LSTM) and demonstrate its application.

Overview

This chapter starts with an introduction to artificial intelligence and its frontiers 
from a cognitive science perspective. Then we move on to an overview of arti-
ficial neural networks—concepts, components, architectures, and software pack-
ages. We perform a detailed exploration of a multilayered feed-forward network 
and its implementation using Python and Keras frameworks. A discussion on con-
volutional neural networks and their implementation follows. Finally, we explore 
recurrent neural networks, LSTM, and their implementation.

Chapter 12
Artificial Intelligence and Deep Neural 
Networks

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Sundararajan, Multivariate Analysis and Machine Learning Techniques,  
Transactions on Computer Systems and Networks, 
https://doi.org/10.1007/978-981-99-0353-5_12

 Supplementary Information The online version contains supplementary material 
available at https://doi.org/10.1007/978-981-99-0353-5_12.

https://doi.org/10.1007/978-981-99-0353-5_12#DOI
http://dx.doi.org/10.1007/978-981-99-0353-5_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0353-5_12&domain=pdf


392 12 Artificial Intelligence and Deep Neural Networks

Definitions

Activation function: The activation function is a transformation function in a neu-
ron, where the weighted sum of its inputs is transformed into the output using a 
function such as the sigmoid, the hyperbolic tangent, softmax, and rectified linear 
unit.
AdaGrad: AdaGrad, an optimization algorithm employing gradient descent, cus-
tomizes the step size for each variable. This adjustment is determined by the par-
tial derivative of the optimizing function with respect to that specific variable.
Artificial Intelligence (AI): AI is ‘the science and engineering of making intelli-
gent machines’. There are two approaches to AI—symbolic and connectionist. A 
medical expert system, which is a rule-based system, is an example of a symbolic 
system. Artificial neural networks are examples of connectionist systems.
Backpropagation: During the learning process of ANN, the deviation of the output 
from the target is computed using a loss function. The weights are adjusted based 
on their contribution to error, applying the chain rule of derivatives by an algo-
rithm that traverses backward from the output layer. This is called backpropaga-
tion in a multi-layer neural network.
Convolution: Convolution is applying a filter (F) iteratively over all the pixels of 
an image (I). A filter (F) carries a set of weights learned using the backpropagation 
algorithm. A filter can be considered as storing a single pattern. When we con-
volve this filter across the corresponding input, we find the degree of similarity 
between the filter and different locations in the input. This principle is used for 
edge detection.
Convolutional Neural Network Architecture (CNN): CNN is a special case of 
feed-forward neural network suitable for image processing. CNN consists of the 
following segments—feature extraction and classification.
Cost function: Same as loss function.
Deep learning: Deep learning emphasizes learning by successive layers of increas-
ingly meaningful representations using a connectionist design of neurons.
Feature detection: Feature detection is the first stage in image processing. There 
are various features—edges, corners, ridges, and blobs/regions. Small contiguous 
areas often describe these features. The recognition of features, such as edges, 
does not depend on their location within the edge.
Feature Extraction: The feature extraction segment consists of many convolutional 
layers, followed by pooled layers.
Feed-Forward Neural Network (FFNN): A feed-forward neural network is a sim-
ple multilayered neural network architecture. The input data moves through hid-
den layers to the output layer in one direction. The layers do not give feedback to 
any previous layers. The connections between nodes do not form a cycle at any 
stage.
Gradient descent: In a neural network, the learning process entails discovering a 
configuration of model parameters that minimize a specified loss function across 
a given set of training data samples. Random batches of data samples are selected, 



39312 Artificial Intelligence and Deep Neural Networks

and the gradient of the model parameters concerning the loss is calculated. The 
parameters are then adjusted by a proportion determined by the learning rate, 
moving in the direction opposite to the gradient. The process is reiterated through 
multiple passes over the entire dataset, aiming for convergence based on prede-
fined criteria.
Learning process: In a neural network, learning involves finding a combination of 
model parameters that minimize a loss function for a given set of training data 
samples.
A loss function, also known as a cost function or objective function, is a math-
ematical function that quantifies the difference between the actual target values 
and the values predicted by a machine learning model. The loss function measures 
model performance.
Machine learning: Machine learning involves identifying the correct model param-
eters that optimize the predictive capability based on the information in the data 
available.
Network layers: A deep learning neural network will have multiple layers, each 
with a set of neurons. A layer other than the input layer consists of (a) an activa-
tion function—which accepts a tensor input and generates a tensor output and (b) 
the current state—the (coefficient) weights held in TensorFlow variables.
Neural network: Comprising neurons arranged in layers, a neural network pro-
cesses external inputs through its input layer and produces final outputs from its 
output layer. The intermediate, hidden layers are typically trained to identify inter-
mediate concepts crucial for determining the ultimate output.
Neuron: A neuron takes one or more inputs, multiplies each input by a weight 
parameter, sums them up, and adds a bias term to the sum. The weighted sum is 
passed as input to an activation function, which transforms it. The output from a 
neuron is sent forward to the neurons of the next layer.
Optimization techniques: Optimization techniques help to minimize the loss func-
tion (or optimize the cost function). The optimizer specifies how the gradient of 
the loss will be used to update parameters. The following are some of the com-
monly used optimizers—Gradient Descent, AdaGrad, RMSProp, and Adam.
Recurrent Neural Network (RNN): Recurrent neural network (RNN) is a feedback 
neural network. It is also known as auto-associative network. RNN is designed to 
recognize sequences, such as the sentences in a natural language, which is com-
posed of sequences of words, or the stock market position of a company, which is 
composed of a series of stock prices.
Regularization serves to counteract overfitting by incorporating various tech-
niques. These techniques encompass penalizing substantial weights (coefficients), 
randomly excluding certain nodes during each iteration of gradient descent, and 
utilizing a validation set to facilitate stopping the training process when the loss on 
the validation set reaches convergence, etc.
RMSProp: RMSProp (root mean squared propagation) is an optimization algo-
rithm that imbibes the properties of gradient descent and AdaGrad—it uses a 
decaying average of partial gradients to determine the step size for each variable.



394 12 Artificial Intelligence and Deep Neural Networks

The LSTM model is a refinement RNN for learning long-distance associations. 
LSTM can save selected information into the memory, forget information by purg-
ing it, and focus on memory that is relevant to the context.

12.1  Artificial Intelligence

Artificial Intelligence (AI) was coined in 1955 by John McCarthy, Emeritus 
Professor of Computer Science at Stanford University. He defined AI as ‘the sci-
ence and engineering of making intelligent machines’ (Andresen 2002). Research 
in AI is associated with learning (memorization and generalization), reasoning 
(inductive and deductive), problem-solving, perception, and language.

AI research received a big boost in the 2010s with the emergence of powerful 
systems to process big data and support machine intelligence. Tracing the history 
of AI, two observations are worth mentioning, as they reveal profound thoughts 
in this area. Allan M Turing, a Mathematician, Computer Scientist, and Logician, 
considered one of the founders of AI, predicted that computers would one day play 
incredibly good chess. In 1997, IBM's chess computer Deep Blue beats the reign-
ing world champion, Garry Kasparov, in a six-game match. Deep Blue was a 256-
core machine that examined 200 million possible moves per second and looked 
ahead at as many as 14 turns of play. Noam Chomsky, Emeritus Professor of MIT, 
one of the world’s greatest cognitive scientists and linguists, passed a thought-pro-
voking comment—‘a computer beating a grandmaster at chess is about as inter-
esting as a bulldozer winning an Olympic weightlifting competition’ (Copeland 
2023).

However, many people on the other side of the spectrum, such as Yuval Noah 
Harari, are overawed at the possibilities of artificial intelligence. ‘What will hap-
pen to the job market once artificial intelligence outperforms humans in most 
cognitive tasks? What will be the political impact of a massive new class of eco-
nomically useless people? What will happen to relationships, families, and pen-
sion funds when nanotechnology and regenerative medicine turn eighty into the 
new fifty? What will happen to human society when biotechnology enables us to 
have designer babies and to open unprecedented gaps between rich and poor?’ 
(Harari 2016). He continues to say that such developments may happen by about 
2040.

While brushing aside profound questions from sociologists, we may need to 
acknowledge that AI raises some of the fundamental questions of philosophy—
especially epistemology (theory of knowledge) and axiology (theory of principles 
and values). What is intelligence? How does it work? How does human intelli-
gence differ from that of animals? What is the foundation of linguistic capability? 
What is ‘reasoning’? What is ethics? These are all major questions of scientific 
research today. All living beings possess instincts that are genetically coded. 
Animals (including human beings) develop behavior patterns through interactions 
with the environment. However, human beings appear to have a distinguishable 



395

Fig. 12.1  Machine intelligence

12.1 Artificial Intelligence

faculty, ‘reasoning’, that leads to self-consciousness and abstract quests such as 
‘meaning’ and ‘truth’ of life. The constitution and rules of the human mind remain 
elusive and a matter of speculation starting from the time of Gautama Buddha and 
Zeno of Citium to Nobel Laureate Francis Crick (biophysicist and neuroscien-
tist), who hypothesizes that all human feelings, thoughts, actions, and conscious-
ness itself are products of neural activity in the brain. How far can AI emulate the 
human mind? How many more years of scientific investigations would lead us to 
such effective models? These are questions for posterity (Fig. 12.1).

Now let us examine the state of the art of machine intelligence today. As we 
know, AI finds application in a multitude of domains such as bioinformatics, 
health care, natural language processing, digital image processing, automation, 
business, government and public services, and so on.

Exploring genetic data facilitates detecting abnormalities, discerning causal 
genotype-phenotype connections, anticipating potential issues, and tailoring per-
sonalized drug recommendations to enhance medical interventions. The data 
underlying a single human genome sequence is about 200 gigabytes! Researchers 
construct probabilistic models such as Markov chains and hidden Markov models 
to study DNA sequences. Pharma companies use AI for cost-effective drug dis-
covery. AI systems support medical diagnosis, preventive care, and prediction of 
failures based on historical data.

Natural language processing (NLP) techniques help to understand human lan-
guage in written or spoken form and translate it to another language or respond 
to commands. Some applications include voice-operated GPS systems, translation 
tools, speech-to-text dictation, and customer service chatbots.

Convolutional Neural Network (CNN) architectures are used extensively to 
build models for digital image processing. One of the applications is biomedical 



396 12 Artificial Intelligence and Deep Neural Networks

image processing, which assists medical practitioners in visualizing, interrogating, 
identifying, and treating deformities in internal organs and systems. The investiga-
tion into remote sensing focuses on the automated and efficient analysis of exten-
sive information that is challenging to acquire directly or evaluate manually, such 
as satellite images, geosensor data, storms, wildfires, and more. Computer vision 
enables computing devices and systems to gather meaningful information from 
digital images and act based on that.

One of the flourishing domains in AI is generative AI, encompassing algorithms 
that leverage reinforcement learning, generative adversarial networks (GANs), 
and transformer-based models for content creation across various mediums such 
as text, code, audio, images, and videos. An exemplary application in this realm 
is ChatGPT by OpenAI, which adeptly codes computer programs, composes 
music and crafts short stories and essays. This application is powered by a Large 
Language Model (LLM), representing one of the most successful applications of 
transformer models. LLMs acquire knowledge from extensive datasets and are 
being explored in a wide spectrum of topics, ranging from enhancing linguistic 
capabilities in AI to decoding proteins.

12.2  The Machine Learning Model

Machine learning became a buzzword in the late 1990s. While AI is a broader 
concept of creating intelligent machines, Machine Learning (ML) is a specific 
approach within AI that involves using algorithms to enable machines to learn 
from data. Machine learning involves identifying the correct model parameters 
that optimize the predictive capability and deriving information from available 
data. The data sample is expected to consist of a set of features and possibly the 
corresponding targets. From the data sample, subsets are selected randomly and 
further partitioned into training and test datasets. The training and testing are 
repeated iteratively to develop a model with accurate performance. We also saw 
that machine learning can be broadly categorized as follows:

• Supervised learning: Training data includes desired outcomes.
• Unsupervised learning: Training data does not include desired outcomes.
• Semi-supervised learning: Training data includes a few desired outcomes.
• Reinforcement learning: Rewards from a sequence of actions.

12.2.1  Supervised Learning

We had a detailed discussion of supervised learning and its application in the 
last chapter. As we know, in this method, the training data includes input features 
and desired targets. Based on the data samples, an algorithm learns to predict the 



39712.2 The Machine Learning Model

output (target) given a set of features. The task is called classification if the tar-
get is a set of discrete categories. If the target is a continuous variable, the task 
is called regression. Some supervised learning applications include image classi-
fication, medical diagnosis, language translation, speech recognition, sentiment 
analysis, autonomous driving, customer churn prediction, stock price prediction, 
recommendation systems, weather forecasting, market segmentation, etc.

12.2.2  Unsupervised Learning

In this learning method, the training data includes input features but does not 
include the desired outcomes. Some unsupervised learning methods aim to discover 
groups with similar features within the data. Called cluster analysis, it offers sev-
eral techniques to segregate objects into homogeneous groups called clusters. The 
objects in each cluster tend to be similar while being dissimilar to those in the other 
clusters (Han et al. 2014). Some of the applications of unsupervised learning include 
social network analysis, recommendation systems (collaborative filtering), customer 
segmentation, market basket analysis, image compression, genomic sequencing, etc.

ChatGPT and other models utilizing the GPT architecture undergo pre-training 
through unsupervised learning. The pre-training phase entails predicting the next 
word in a sentence based on the context of preceding words, leveraging extensive 
and diverse publicly available text from the Internet. However, the following must be 
noted. After the pre-training stage, these models undergo fine-tuning for specific tasks 
using supervised learning or alternative methods. In the case of ChatGPT, the fine-tun-
ing process incorporates custom datasets and reinforcement learning from human 
feedback, enhancing the model's control and safety for interactive applications.

12.2.3  Semi-supervised Learning

Semi-supervised enables us to build systems where labeled training data may 
be sparse or costly. In this learning method, the training data comprises a small 
amount of labeled data and a large amount of unlabeled data. At first, a neural net-
work model is trained on a limited set of data, where clustering algorithms group 
and label similar items. These labels are subsequently used to classify the other 
data points.

An example is the Google application—‘Smart Reply for Inbox’. This appli-
cation developed by Google's ‘Expander machine learning system is used for 
massive graph building ‘(containing billions of nodes and trillions of edges)’ and 
processing to recognize ‘concepts in natural language, images, videos, and que-
ries. Google products for applications such as reminders, question answering, lan-
guage translation, visual object recognition, dialogue understanding’, etc. (Sujith 
2016). make use of this unsupervised machine learning platform.



398 12 Artificial Intelligence and Deep Neural Networks

12.2.4  Reinforcement Learning

This learning method constitutes rewards from a sequence of actions. The prob-
lem is to find suitable actions to be taken in each situation to maximize a reward. 
Unlike supervised learning, the training data does not consist of the desired output 
in each situation. Instead, they are discovered by a process of trial and error.

Richard S. Sutton, a Distinguished Research Scientist at DeepMind and a 
Professor of computing science at the University of Alberta, is considered one 
of the founders of modern computational reinforcement learning. Reinforcement 
learning relies on the Markov Decision Process (MDP). MDP is a sequential deci-
sion problem for a fully observable, stochastic environment with a Markovian 
state transition model and associated rewards {Sutton}. Ideas from dynamic pro-
gramming methods are used to build approximate solutions to deal with large sto-
chastic state-action space {Sutton}. Reinforcement learning finds applications in 
various fields such as gaming, robotics, transportation, energy, health care, manu-
facturing, and finance.

Reinforcement Learning (RL) and Deep Learning (DL) are two powerful par-
adigms in machine learning. They are combined to create reinforcement learn-
ing with deep learning techniques, often called Deep Reinforcement Learning 
(DRL). In classical reinforcement learning, the emphasis is on using algorithms 
that explicitly represent and update the environment's value functions, policies, or 
models.

Deep reinforcement learning involves using deep neural networks to approxi-
mate complex functions, such as value functions or policies to handle high dimen-
sional state spaces and complex decision-making scenarios. DRL typically enables 
end-to-end learning, where the agent directly learns from raw sensory input to 
action, with minimal need for manual feature engineering. DRL has successfully 
played complex games, such as DeepMind's AlphaGo (see the story at the end 
of the chapter). DRL is employed in computer vision and robotics. Such models 
adapt to various environments and continually changing conditions by self-learn-
ing. In NLP, DRL is used in dialogue systems, language understanding, and gen-
eration. DRL is used in transfer learning where ANN models are architected, 
pre-trained on related tasks, and then fine-tuned for specific applications, enhanc-
ing generalization.

12.3  Deep Learning

As stated earlier, intelligence is associated with learning, reasoning, prob-
lem-solving, perception, and language. Scientists have developed two approaches 
to AI—symbolic and connectionist. See Fig. 12.2. During the last century, 
researchers believed intelligence could be emulated by connecting facts and rules. 
This approach is known as symbolic AI. Expert systems of the 1980s (with the 



399

Ar�ficial Intelligence 

Conec�onist Systems

Deep Learning is based on 
ar�ficial neural networks with 

mul�ple layers.

Symbolic Systems

Expert Systems

Mimicking human-like intelligence 
by a computer, robot, or other 

machines

Fig. 12.2  Deep learning—a subset of AI

12.3 Deep Learning

arrival of microprocessor chips) were the pinnacle of this movement. Though sym-
bolic AI proved suitable for solving well-defined, logical problems, such as play-
ing chess, it failed to tackle complex, fuzzy problems such as pattern recognition 
and language translation.

An artificial neural network (ANN) is founded on connectionist design that 
attempts to mimic the neurons and their interconnection in the human brain. 
Deep Learning (DL) constitutes a specialized variant of artificial neural networks, 
encompassing neural networks with multiple layers, commonly known as deep 
neural networks. Deep learning relies on learning by successive layers of increas-
ingly meaningful representation of input data.

The origin of deep learning can be traced to cybernetics (1940s–1960s), and 
connectionism (1980s–1990s). The current resurgence of AI happened in 2006, 
with the availability of cheap and powerful systems that can manage big data. For 
example, graphics processing units (GPUs) have built-in circuits facilitating highly 
parallelized linear algebra operations. Some of the earliest learning algorithms in 
this area were intended to model neurobiological learning. As a result, deep learn-
ing got its popular pet name—artificial neural networks (ANNs). However, it may 
be noted that deep learning models are not models of the brain, and there is no 
evidence that the brain implements anything like the learning mechanisms used in 
modern deep learning models.

Deep learning is a specific type of machine learning, as it involves building 
models by learning patterns and relationships from data. Deep learning is different 
from other ML models by way of its architecture, viz., multilayered neural net-
work architecture. Deep learning methods find use in all categories of advanced 
machine learning—supervised (e.g., FFNN, CNN, and RNN/LSTM that are cov-
ered in this chapter), semi-supervised (e.g., generative adversarial networks or 
GANs), unsupervised (e.g., cluster analysis in customer segmentation for targeted 
marketing), and reinforcement learning (games, robotics, autonomous, agents, etc.)



400 12 Artificial Intelligence and Deep Neural Networks

Fig. 12.3  Neuron, the building block of neural networks

The rest of the chapter is devoted to the exposition of supervised learning 
using deep learning architectures such as feed-forward neural networks, convo-
lutional neural networks, recurrent neural networks, and LSTM using the Keras 
framework.

12.4  The Artificial Neural Network

A neural network comprises neurons arranged in layers, with the outputs of one 
layer serving as inputs for the next (Goodfellow et al. 2016). The input layer receives 
external inputs, while the output layer generates the ultimate output. The interme-
diate layers between them, known as hidden layers, are typically trained to identify 
and understand intermediate concepts crucial for determining the final output.

12.4.1  Neuron

A neuron takes one or more inputs, multiplies each input by a weight parame-
ter, sums them up, and adds a bias term to the sum. The weighted sum is passed 
as input to a nonlinear activation function, which transforms it. The output from a 
neuron is sent forward to the neurons of the next layer (see Fig. 12.3).

Propagating sequentially through layers, the input features undergo repeated 
transformations. The final outputs that emerge are expected to represent the target 
values. The deviation of the final output from the actual target is computed using 
a loss function. The weights are adjusted in all the layers to reduce the error. This 
is achieved by an algorithm that traverses backward through the network, starting 
from the output layer (François 2019). The weights are adjusted based on their 
contribution to error, applying the chain rule of derivatives.



401

(a) Relu (b)Sigmoid

Fig. 12.4  Activation functions—ReLU and Sigmoid

12.4 The Artificial Neural Network

The artificial neuron may be compared to the model of a biological neuron. In 
the biological neurons, the dendrites receive electrical signals (inputs) from the 
axons of other neurons. At the synapses between the dendrite and axons, electrical 
signals are modulated (weights are applied) in various amounts. The neuron fires 
when it reaches a threshold.

12.4.2  Activation Function

Determining a node's output in a neural network involves a two-step process. First, 
the system computes the weighted sum of the inputs assigned to that node. Note that 
these weights are dynamically adjusted through the learning process during training. 
This step develops the network's ability to assign varying importance to different 
inputs. In the second step, an activation function is applied to the weighted sum. The 
activation function is crucial in introducing nonlinearity to the model, allowing the 
neural network to learn and represent complex relationships within the data.

Several activation functions are commonly employed in neural networks, each 
serving specific purposes. The sigmoid function often produces an output distribu-
tion bounded by 0 and 1. The hyperbolic tangent function produces outputs between 
-1 and 1, aiding in mitigating the vanishing gradient problem. The SoftMax function 
is employed in the output layer for multi-class classification, providing a probability 
distribution over multiple classes. Finally, the rectified linear unit (ReLU) function, 
being computationally efficient, is commonly used for hidden layers, introducing 
nonlinearity by outputting the input for positive values and zero for negative values. 
ReLU and Sigmoid distributions are illustrated below (Fig. 12.4).

Relu (X) = maximum (0, X) see Fig. 12.4(a)

Sigmoid (X) = 1/
(
1+ e−X

)
− see Fig. 12.4(b)



402 12 Artificial Intelligence and Deep Neural Networks

Fig. 12.5  Feed-forward network with backpropagation of error

12.4.3  Network Layers

A deep learning neural network consists of multiple layers, each with a set of 
neurons. See Fig. 12.5. A layer other than the input layer consists of neurons that 
function as follows. Each neuron maintains its current state in the weight vector 
(W), accepts an input vector (X), and generates an output (y) using a nonlinear 
activation function.

12.4.4  The Learning Process

Three important features of deep learning are (a) the neural network architec-
ture, (b) the learning method—gradient descent or its variants, and (c) the reduc-
tion of model complexity by using regularization techniques. In a neural network, 
learning involves finding a combination of model parameters that minimize a 
loss function for a given set of training data samples.

Let us assume that random batches of data samples are drawn and the gra-
dient of the model parameters with respect to the loss (output—actual target) 



40312.4 The Artificial Neural Network

is computed. The parameters are modified by a fraction defined by the learning 
rate in the direction opposite to the gradient. This process is repeated with several 
passes over the entire dataset, for convergence against set criteria. See Chap. 11 
for a detailed description of the steps involved.

The learning process of ANN can be summarized as follows:
Assume, y = W0 +W1X1 + · · · +WkXk.

1. Draw a ‘mini-batch’ of training samples and the corresponding targets y.
2. Run the sample data through the network and obtain the predictions ŷ.
3. Compute the loss = (y − ŷ)2.
4. Compute the gradient of the loss with respect to Wi. This is done by a back-

ward pass through each layer starting from the last layer and moving toward 
the first layer, in sequence. At any layer, the gradient is a set of partial 
derivatives of the loss (y − ŷ)2 with respect to each weight Wi, i.e., δ(loss 
function)/δ(Wi).

5. Move the parameters (Wi) by a step in the opposite direction of the gradient to 
reduce the loss on the batch by a small step.

Wi = Wi− (step ∗ gradient).

6. Repeat steps 1—5 until a termination criterion is reached. The criteria may 
be one or more of the following: the loss or mismatch is within an acceptable 
limit; there is no significant difference in the loss over a set of iterations; the 
number of iterations has reached a set limit; etc.

Neural networks are chains of differentiable tensor operations. This makes 
it possible to apply the chain rule of derivation to find the gradient function 
mapping the current parameters and current batch of data to a gradient value 
(Goodfellow et al. 2016). This forms the basis of learning in neural networks.

Assume the simple scenario of a purely sequential feed-forward network 
(Goodfellow et al. 2016). The input feature vector ‘X’ passes through the hidden 
layers sequentially to the output layer. In the learning process, we need to cor-
rect the prediction error, by minimizing the loss. Therefore, we propagate the error 
back from the output layer to the hidden layers backward in sequence to adjust the 
weights using partial derivatives in each node, in each layer. This is called back-
propagation in a multi-layer neural network.

12.4.5  The Loss Function (Cost Function)

We discussed the loss function (or cost function) in Chap. 11. The loss function 
is a function of the error or the difference between the output that emerges from 
the network and the output predicted by the model. During training, our objective 
is to minimize prediction errors.

http://dx.doi.org/10.1007/978-981-99-0353-5_11
http://dx.doi.org/10.1007/978-981-99-0353-5_11


404 12 Artificial Intelligence and Deep Neural Networks

where

y   is the observed value,
ŷ   is the value predicted by the model,
n   is the sample size.

Numerous loss functions, such as absolute error, squared error, and Huber loss, 
apply to regression models. The classification models use loss functions such as 
cross entropy, log loss, exponential loss, and hinge loss. Please check Chap. 11 for 
a detailed description.

12.4.6  Optimization Techniques (for Learning)

We had a discussion of optimization techniques in Chap. 11. Optimization tech-
niques help to minimize the loss function or optimize the cost function (Géron 
2019). Assume the following regression equation:

Prediction error =
1

n

∑
|y− ŷ|

Loss Function = f(Prediction Error)

y = W0 +W1X1 + · · · +WkXk

where k is the number of features.
The optimizer specifies how the gradient of the loss will be used to update 

parameters. The following are some of the commonly used optimizers 
(Goodfellow 2016):

• Gradient Descent.
• Adaptive learning rate methods—AdaGrad, RMSProp, Adam.

Gradient descent is an optimization algorithm that uses the negative gradient of 
an objective function to locate the minima (Chollet 2017). It uses the same learn-
ing rate (step size) for each feature (input variable). We had a detailed discussion 
on gradient descent in the last chapter. AdaGrad uses gradient descent. However, 
the step size (of change in the coefficients wi) is different for each variable (Xi). 
The step is based on the partial derivative of the optimizing function with respect 
to that variable. The parameters with the larger partial derivatives of the loss are 
assigned a rapid decrease in their learning rate. RMSProp (root mean squared 
propagation) imbibes the properties of gradient descent and AdaGrad—it uses a 
decaying average of partial gradients to determine the step size for each variable. 
Adam is another adaptive learning rate optimization algorithm that is very popu-
lar. Adam stands for adaptive moments, an improvement over RMSProp. It uses 

http://dx.doi.org/10.1007/978-981-99-0353-5_11
http://dx.doi.org/10.1007/978-981-99-0353-5_11


40512.4 The Artificial Neural Network

stochastic gradient descent based on adaptive estimation of first-order and sec-
ond-order moments. The gradient is different for each parameter. It takes advan-
tage of momentum by using the moving average of the gradient (Chollet 2017).

12.4.7  Regularization Techniques (for Smoothening)

We had a detailed discussion of regularization techniques in Chap. 11. 
Regularization helps to prevent overfitting. Specialized techniques are used to 
avoid overfitting a deep neural network. These include penalizing large weights 
(coefficients or Wi’s), randomly dropping some nodes each time we apply a step 
of gradient descent, and the use of a validation set to enable us to stop training 
when the loss on the validation set converges (Géron 2019).

12.4.8  NN Architectures, Training Challenges, 
and Transfer Learning

Neural network architectures form the foundation of deep learning models. 
Various architectures cater to different tasks (Goodfellow 2016). Convolutional 
Neural Networks (CNNs) excel in image-related tasks, Recurrent Neural 
Networks (RNNs) handle sequential data, and Transformers dominate natural lan-
guage processing. Autoencoders and Generative Adversarial Networks (GANs) 
find applications in unsupervised learning and data generation, respectively. 
Choosing the right architecture depends on the nature of the data and the problem 
at hand. We will discuss some of the architectures subsequently.

Training neural networks poses several challenges. Vanishing and exploding 
gradients can impede convergence, especially in deep networks. Choosing appro-
priate weight initialization techniques, activation functions, and optimization 
algorithms addresses these issues. Overfitting is another challenge, prompting 
regularization methods such as dropout and weight decay. Selecting an optimal 
learning rate and managing computational resources effectively are additional 
challenges. Continuous experimentation and fine-tuning are often necessary to 
overcome these obstacles.

Optimization and weight initialization techniques, dropout, regularization, and 
batch normalization are critical components in training deep neural networks.

Xavier Initialization proposed in 2010 is designed to address the challenges of 
training deep neural networks with various activation functions, including sigmoid 
and hyperbolic tangent (tanh). Its objective is to keep the scale of the gradients 
roughly the same across all layers. Kaiming Initialization, proposed in 2015, is 
designed for ReLU activation functions. Both methods help to address the van-
ishing gradient problem associated with traditional weight initialization methods. 

http://dx.doi.org/10.1007/978-981-99-0353-5_11


406 12 Artificial Intelligence and Deep Neural Networks

They are important tools for improving the convergence and performance of deep 
neural networks, and the choice between them often depends on the specific acti-
vation functions used in the network.

Dropout is a regularization technique where randomly selected neurons are 
ignored during training. It helps prevent overfitting by adding noise to the net-
work. Regularization methods like L1 and L2 add penalty terms to the loss func-
tion, discouraging overly complex models. Batch normalization normalizes the 
inputs of each layer, reducing internal covariate shift and potentially accelerating 
training.

Transfer learning leverages pre-trained models to enhance performance on 
a specific task. Models trained on large datasets, such as ImageNet, can serve as 
feature extractors for tasks with limited labeled data. Fine-tuning allows adapting 
pre-trained models to task-specific nuances. Domain adaptation extends transfer 
learning to different but related domains, addressing the challenge of domain shift. 
This approach is particularly beneficial when training a deep model from scratch is 
impractical due to limited data or computational resources.

12.4.9  Keras and TensorFlow

Keras, a deep learning API implemented in Python, operates seamlessly on the 
TensorFlow machine learning platform. It was designed to facilitate rapid exper-
imentation. TensorFlow, an end-to-end open-source machine learning platform, 
originated from the Google Brain Team's efforts, utilizing Python, C++, and 
CUDA. Its initial release occurred in 2015, with CUDA being a parallel com-
puting platform and programming model by NVIDIA for general GPU-based 
computing.

TensorFlow simplifies the process of creating machine learning models for 
both novices and experts. Keras, operating as a high-level API, is built on top of 
TensorFlow and supports multiple backends, including TensorFlow and Theano. 
Originating from MIT, Keras emphasizes expeditious experimentation in deep 
learning. Moreover, Keras provides a versatile application library containing 
various pre-built deep learning models. These models are invaluable for feature 
extraction and prediction tasks, equipped with pre-trained weights that offer the 
flexibility for fine-tuning to suit specific requirements.

12.5  Simple Feed-Forward Neural Network (FFNN)

A feed-forward neural network is a simple multilayered neural network archi-
tecture. The input data moves through hidden layers to the output layer in one 
direction. The layers do not give feedback to any previous layers. The connections 
between nodes do not form a cycle at any stage. For example, see Fig. 12.5.



407

Fig. 12.6  Feed-forward neural network with weight vectors

12.5 Simple Feed-Forward Neural Network (FFNN)

12.5.1  FFNN—Basic Operation

Let us elaborate on the neural network shown in Fig. 12.5, including weights 
associated with each node. The network architecture is shown in Fig. 12.6 and 
described below. There are three input variables—X1, X2, and X3. Each node has 
an additional input—the Bias—a number, similar to the intercept in the regression 
model.

There are two hidden layers—hidden layer-1 and hidden layer-2. Each of these 
hidden layers has three nodes each. The hidden layers use ReLU activation func-
tions, represented, by Relu (W, X). Take a look at the weight vectors wLNF. Here L 
indicates the hidden layer, N indicates the node, and F indicates the feature. The 
weights differ from feature to feature, node to node, and layer to layer.

The ReLU activation function generates exactly one output. In the output layer, 
the activation function used is sigmoid. In the output layer, sigmoid (W31·X) rep-
resents the sigmoid function applied to the dot product of the feature vector X and 
the corresponding weight vector W, which generates a binary output {0, 1}.



408 12 Artificial Intelligence and Deep Neural Networks

The Operations at the Hidden Layer-1, Node-1

Look at hidden layer-1, node-1, which shows Relu(W11, X). Here, the operations 
involved are

• Take the dot product of feature vector X with the corresponding weight vector 
W11.

W11 · X = W111X1 +W112X2 +W113X3

• Add the Bias term, Bias11.
• Apply ReLU function.

The operations can be summarized as follows:

The Operations at the Output Layer

In the output layer, we have sigmoid activation function, which generates a 
binary outcome 0 or 1. The operations can be summarized as follows:

• Sigmoid (W31, X): Function Description
• Sigmoid (W31.X + Bias3): Dot Product W.X + Bias
• Sigmoid ([W311X1 +W312X2 +W313X3] + Bias3)

12.5.2  An FFNN for Diamond Price Prediction

Let us demonstrate a simple multilayered neural network, for predicting the 
price of diamonds. We are going to use the ‘diamonds’ dataset. The major steps to 
be followed in the tutorial are listed below:

1. Data preprocessing/setup.
2. Setup neural network architecture.
3. Train the neural network.
4. Measure the model performance.

1. Data Preprocessing/Setup

We consider nine features of diamonds for price prediction. A regression model 
requires numeric variables. Three of the features, cut, color, and clarity are cat-
egories. We will re-code them as integers to the variables cuti, colori, and clar-
ity. The features that we choose as input to the neural network are (X1 … X9), 

Relu ([W111X1 +W112X2 +W113X3] + Bias11)



409

Fig. 12.7  A neural network for diamond price prediction

12.5 Simple Feed-Forward Neural Network (FFNN)

indicating ‘carati’, ‘cuti’, ‘colori’, ‘clarityi’, ‘depth’, ‘table’, ‘x’, ‘y’, ‘z’. We will 
standardize these features, as gradient descent is sensitive to scale. Diamond price 
(y) is categorized into binary categories {0, 1} into variable pCat. Here, 0 stands 
for ‘low-price’ and ‘1’ for ‘high-price’. Figure 12.7 shows a neural network model 
for diamond price prediction (low or high), based on the above nine input features.

2. Setup Neural Network Architecture

Start with setting a random seed. This helps in the reproducibility of results on 
repeated trials. Set the count of input features—we have nine features. Build the 
neural network. Compile the neural network. The neural network architecture 
summary is shown in Table 12.1. The summary shows that 46 parameters are 
required. This implies that the network needs 46 variables for storing the weights 
and bias terms.

The layers in the neural network architecture are listed below:

• Add a fully connected layer with a ReLU activation function.
• Add a fully connected layer with a ReLU activation function.
• Add a fully connected layer with a sigmoid activation function in the last layer 

to facilitate binary classification.



410 12 Artificial Intelligence and Deep Neural Networks

Table 12.1  Neural network architecture summary

Layer Nodes per 
layer

Inputs/
node

Bias/node Parameter 
description

Parameter 
count

Outputs/
node

Hidden 
layer-1

3 9 1 3 x (9 + 1) 30 3

Hidden 
layer-2

3 3 1 3 x (3 + 1) 12 3

Output 
layer

1 3 1 1 x (3 + 1) 4 1

Total 46

3. Train the Neural Network

• Train the neural network.
• Summarize the training history for accuracy (plot).
• Summarize the training history for loss (plot).

4. Measure the Model Performance

• Predict the classes over the entire dataset.
• Print Confusion Matrix.
• Print Classification Report.

Tutorial 12.5    A Neural Network for Diamond Price Category Prediction

Develop a multilayered feed-forward neural network for predicting the price 
of diamonds. The dataset diamonds is described in Chapter 1.

Let us consider nine features of diamonds, for price prediction. A re-
gression model requires numeric input variables. Three of the features, cut, 
color, and clarity are categories.  We will re-code them as integers into the 
variables cuti, colori, and clarityi. The features that we choose as input 
to the neural network are (X1 .. X9), indicating 'carati', 'cuti', 'colori', 
'clarityi', 'depth', 'table', 'x', 'y', 'z'. We will standardize these fea-
tures, as gradient descent is sensitive to scale. 

Diamond price (y) is categorized into binary categories {0, 1} into vari-
able pCat. Here, 0 stands for ‘low-price’ and ‘1’ stands for ‘high-price’. 

Tutorial 12.5.1 Diamond Price - Data Preprocessing / Setup

import seaborn as sb
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split 

Read Diamonds Data Set from seaborn Library
d = sb.load_dataset('diamonds')
d = d.dropna() # drop rows with null values



41112.5 Simple Feed-Forward Neural Network (FFNN)

Recode Categorical Input Features to Integer
d['cuti'] = d.cut.astype("category").cat.codes
d['colori'] = d.color.astype("category").cat.codes
d['clarityi'] = d.clarity.astype("category").cat.codes

Choose the Input Features
X = d[['carat', 'cuti', 'colori', 'clarityi',
       'depth','table', 'x', 'y', 'z']]

Standardize Features
Xz = StandardScaler().fit_transform(X)
X.columns

d['pCat'] = np.zeros(d.shape[0])
for i in d.index:
    if    d.loc[i, 'price'] < 2000: d.loc[i, 'pCat'] = 0
    else: d.loc[i, 'pCat'] = 1

Setup target data – y, as binary categorical variable (pCat = 0,1)
y = d.pCat      # Target Vector
y[y==0].count() # Label-0: 24203
y[y==1].count() # Label-1: 29737

Test - Train Split; 80% Train, 20% test
X_train, X_test, y_train, y_test = train_test_split(
         Xz, y, train_size= 0.8, random_state=1)  

Tutorial 12.5.2 Diamond Price - Setup Neural Network Architecture

Take a look at Figure 12-7: A Neural Network for Diamond Price Prediction

Load libraries
from keras import models
from keras import layers

Random seed - helps in the reproducibility of results on repeated trials 
np.random.seed(0)

Set the count of input features  
input_features_count = 9

Sequential class: groups a linear stack of layers into a tf.keras.Model.
ann = models.Sequential()

Add a fully connected layer with a ReLU activation function. Fully connected 
or ‘Dense’ layer, implies that, each input to the layer is connected to every 
node in that layer  
In the first hidden layer, we must specify the input feature dimensions

ann.add(layers.Dense(units=3, activation="relu", input_shape=(
        input_features_count,)))



412 12 Artificial Intelligence and Deep Neural Networks

Add another fully connected layer with a ReLU activation function
ann.add(layers.Dense(units=3, activation="relu"))

Add fully connected layer with a sigmoid activation function in the last 
layer, to facilitate binary classification

ann.add(layers.Dense(units=1, activation="sigmoid")) 

Compile the Neural Network
With Root Mean Square Err Propagation, and Accuracy as a performance metric; 
and Binary_crossentropy (a binary classifier).

ann.compile(loss="binary_crossentropy",
            optimizer="rmsprop",        
            metrics=["accuracy"])      

ann.summary()
Layer (type)   OutputShape Parameters Remarks - Weights  
dense_1 (Dense) (None, 3)    30       3 Nodes x (9 inputs + 1 Bias Term)
dense_2 (Dense) (None, 3)    12       3 Nodes x (3 inputs + 1 Bias Term)
dense_3 (Dense) (None, 1)     4       1 Nodes x (3 inputs + 1 Bias Term)
Total params: 46
See Table 12-1 for details

Tutorial 12.5.3 Diamond Price - Train the Neural Network

Train Neural Network
history = ann.fit(X_train, # Features
    y_train,        # Target vector
    epochs=5,       # Number of epochs
    verbose=2,      # Describe epoch
    batch_size=100, # Number of observations per batch
    validation_data=(X_test, y_test)) # Test data

Epoch 1/5 - 2s - loss:0.431 - acc:0.852 - val_loss:0.307 - val_acc: 0.947
Epoch 2/5 - 1s - loss:0.266 - acc:0.954 - val_loss:0.220 - val_acc: 0.962
Epoch 3/5 - 1s - loss:0.198 - acc:0.964 - val_loss:0.169 - val_acc: 0.967
Epoch 4/5 - 1s - loss:0.156 - acc:0.968 - val_loss:0.138 - val_acc: 0.968
Epoch 5/5 - 1s - loss:0.129 - acc:0.968 - val_loss:0.117 - val_acc: 0.970

Let us get familiar with history variable  
print(history.history.keys())  
# dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])

Plot the summary of training history, for accuracy, over the epochs
import matplotlib.pyplot as plt
plt.title('model accuracy', fontsize=16)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.ylabel('accuracy', fontsize=16)



41312.5 Simple Feed-Forward Neural Network (FFNN)

plt.yticks(np.arange(0.85, 1, 0.05), fontsize=16)
plt.xlabel('epoch', fontsize=16)
plt.xticks(np.arange(0, 6), fontsize=16)
plt.legend(['train', 'test'], loc='best', fontsize=16)
plt.show()
# See Figure 12-8 (a): ANN Iterations Performance– Accuracy and Loss

Plot the summary of training history, for loss, over the epochs
import matplotlib.pyplot as plt
plt.title('train/test performance convergence', fontsize=16)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.ylabel('loss', fontsize=16)
plt.yticks(np.arange(0.05, 0.61, 0.1), fontsize=16)
plt.xlabel('epoch', fontsize=16)
plt.xticks(np.arange(0, 6), fontsize=16) 
plt.legend(['train', 'test'], loc='best', fontsize=16)
plt.show() 

See Figure 12-8 (b): ANN Iterations Performance– Accuracy and Loss

Tutorial 12.5.4 Diamond Price - Measure the Model Performance

from sklearn.metrics import confusion_matrix, classification_report

Display the Confusion Matrix
y_pred = ann.predict(Xz)
print('Confusion Matrix')
print(confusion_matrix(y, np.round(y_pred,0)))

Confusion Matrix
[[23510   693]
 [  945 28792]]

Display the Classification Report
print('Classification Report')
category_labels = ['low-price', 'high-price']
print(classification_report(y, np.round(y_pred,0), 
                            target_names = category_labels))
Classification Report
             precision    recall  f1-score   support
  low-price       0.96      0.97      0.97     24203
 high-price       0.98      0.97      0.97     29737
avg / total       0.97      0.97      0.97     53940



414 12 Artificial Intelligence and Deep Neural Networks

Fig. 12.8  ANN iterations performance—accuracy and loss

Fig. 12.9  CNN architecture

12.6  Convolutional Neural Network (CNN)

CNN is a special case of a feed-forward neural network suitable for image 
processing. CNN consists of the following segments: feature extraction and clas-
sification. Figure 12.9 shows a simple CNN architecture for image detection, 
demonstrated in the Tutorial 12.2. Prominent CNN architectures include LeNet-5, 
AlexNet, VGGNet, GoogLeNet (Inception), ResNet, and DenseNet.

LeNet-5 (year 1998) consists of seven layers, including three convolutional lay-
ers and two fully connected layers. The layers are arranged sequentially: C1 (con-
volutional), S2 (subsampling or pooling), C3 (convolutional), S4 (subsampling or 
pooling), C5 (convolutional), F6 (fully connected), and the output layer. Sigmoid 
activation functions are used in the convolutional layers. The output layer used 
SoftMax function.

AlexNet (year 2012) consists of eight layers, including five convolutional lay-
ers and three fully connected layers. It was one of the first deep neural networks to 



41512.6 Convolutional Neural Network (CNN)

utilize many parameters, contributing to its success. Rectified Linear Unit (ReLU) 
activation functions are used after each convolutional and fully connected layer. 
ReLU helped address the vanishing gradient problem and accelerated the training 
of deep neural networks.

VGGNet uses small 3 × 3 convolutional filters, with multiple stacked lay-
ers throughout its architecture. GoogLeNet is characterized by its deep and wide 
architecture, with multiple inception modules stacked on each other. ResNet's key 
feature is the residual block, which allows gradients to flow more easily during 
training, enabling the training of extremely deep networks.

Convolution—Basic Concept

Feature detection is a challenging task in image processing. There are various types 
of features—edges, corners, ridges, and blobs/regions. Small contiguous areas 
often describe these features. The recognition of features such as edges does not 
depend on their location within the edge. Convolution makes use of these concepts.

Convolution is applying a filter (F) iteratively over the entire pixels of an image 
(I). Mathematically, a convolution is an integral that expresses the amount of over-
lap of one function ‘F’ (filter) as it is shifted over another function ‘I’ (image) 
(Leskovec et al. 2020). A filter scans the image similar to raster scan. The filter 
may move in steps of one or more pixels, left to right (across columns) and top to 
bottom (across rows). These steps are called strides.

A filter (F) carries a set of weights learned using the backpropagation algo-
rithm. A filter can be considered as storing a single pattern. When we convolve 
this filter across the corresponding input, we find the degree of similarity between 
the filter and different locations in the input. This principle can be used for edge 
detection.

In CNN, several filters carrying different patterns are applied over the entire 
image. Initial convolutional layers help to detect simple features like the sections 
of edges. The subsequent layers help progressively assemble complex structures, 
such as legs or eyes.

12.6.1  Convolution

Let us consider an example shown in Table 12.2. The input image 6 × 6 is 
shown in Table 12.2a; the filter (or kernel) vector F [1, 0, 0, −1] in Table 12.2b, 
and the output from convolution in Table 12.2c. Table 12.2d shows three examples 
of convolution operation.

Let us consider the convolution operation on image segment B [0, 1, 0, 1]. It is 
computed as the dot product of these vectors B (image segment) and F (the convo-
lution filter). This is shown in Table 12.2d as follows:

Q = B.F,



416 12 Artificial Intelligence and Deep Neural Networks

Table 12.2  Applying 2 × 2 filter to an image 6 × 6, Stride 1
A F P
0 0 0 0 1 1 1 0 0 -1 0 0 1 P=A.F 0x1 + 0x0 + 0x0 + 0x(-1)
0 0 1 0 0 0 0 -1 0 -1 1 0 -1
1 0 1 0 0 1 1 0 1 0 -1 Q Q=B.F 0x1 + 1x0 + 0x0 + 1x(-1)
1 0 0 0 0 1 B 0 0 -1 -1 0

C 1 1 0 1 1 0 R 0 0 -1 0 1 R=C.F 1x1 + 1x0 + 0x0 + 1x(-1)
0 1 1 1 1 0

Table 12.3  Applying 2 × 2 filter to an image 6 × 6, Stride 2
   (a) Filter on Row-1 (b) Filter on Row-2 (c) Filter on Row-3  (d) Output Image (A->P)  

Row 1: 3 windows Row 2: 3 windows Row 3: 3 windows Convolved Image 3x3

0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
0 0 1

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1
1 1 -1

1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1

1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
0 -1 1

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0

where Q is the result of convolution of B and F
B = [0,1,0,1]
F = [1, 0, 0, −1]
Q = B.F = [0,1,0,1]. [1, 0, 0, −1] = 0 × 1 + 1 × 0 + 0 × 0 + 1 x (−1) = −1.

See Table 12.2a. Consider an image ‘A’ measuring 6 × 6. Assume a window ‘F’ 
with dimensions (2 × 2) sliding horizontally across the image. It moves from left 
to right over the first row and continues this process for each subsequent row. This 
will result in the output P, which has 5 × 5 = 25 windows. See Table 12.2c.

A (6× 6)− > P (5× 5).

So, the convolution operation on an input of 6 × 6 results in an output of 5 × 5.
Note that, in practice, the entire set of 25 convolutions can be done in parallel.
In the above discussion, we assumed that we slide the window in strides of 

one step. However, in practice, the stride (s) can be a different number. If the 
stride = 1, an image of 6 × 6 will convolve into 5 × 5.

If the stride is 2, an image of 6 × 6 will convolve into 3 × 3. See Table 12.3. 
In this case, the filter moves 2 pixels at a time, from left to right and top to bot-
tom. The 2 × 2 filter makes nine movements to cover the 6 × 6 image. The filter 
positions are shown by color—violet, green-blue, blue, green, yellow, light orange, 
dark orange, red, and finally shaded white, in order. This results in mapping 6 × 6 
input to 3 × 3 output as shown  below:

A (6× 6)stride=2− > P (3× 3).



41712.6 Convolutional Neural Network (CNN)

As we saw, for an input image A of size (6 × 6), the output is P(5 × 5). To main-
tain the image size (m) constant over the convolution, we may add extra columns 
and rows of zeros. This is called zero-padding. For a padding size of p, we add ‘p’ 
rows at the top and bottom each, and ‘p’ columns at the left and right.

Let us summarize our discussion.
Assume that the input image is of size m × m pixels, the output is n × n, the 

filter size is (f x f), the stride is s, and padding is p. The output size ‘n’ can be 
expressed by the following formula:

(12.1)n = (m− f+ 2p)/s+ 1

Assume that we use k filters (and that we constrain all filters to have the same 
size, stride, and padding). Then the output contains k activation maps. The output 
layer will be.

n× n× k where the formula for n is given in Eq. (12.1)

In the above discussion, we have assigned {0, 1} as the possible values of a 
pixel of the input image, assuming black/white. A common format for an image 
pixel is a set of three values representing the color channels R, G, B, the values 
of R, G, or B varying from 0 … 255. Considering (RGB), a 2 × 2 filter will have 
a dimension 2 × 2 × 3. The input image and the output will both have one more 
dimension included—input (6 × 6 × 3) and output (5 × 5 × 3). Considering RGB, 
the output layer will be

12.6.2  Feature Extraction

The feature extraction segment consists of a large number of convolutional lay-
ers, followed by pooled layers. A simple example is given below:

• The input layer feeds the feature matrix, e.g., a handwritten image represented 
by [32 × 32] pixel matrix.

• In the convolutional layer, a set of filters (e.g., 3 × 3 window of pixels; f = 3) 
slide through the input feature matrix in strides of size 1 (s = 1); convolve the 
window and transform it using a nonlinear function (ReLU). We apply multiple 
filters and take several convolutions at a time (possibly in parallel), from which 
the vital ones are identified and given appropriate weightage during the training 
process.

• In the maxpooling layer, the data after convolution are divided into small seg-
ments (e.g., 2 × 2 window of pixels), and the maximum value in the segment is 
chosen as the representation of the segment.

n × n × k × 3



418 12 Artificial Intelligence and Deep Neural Networks

12.6.3  Classification

This layer receives the extracted features and flattens them into fewer dimen-
sions. Then it uses a fully connected neural network for classification (e.g., using 
SoftMax multi-class activation function). The output will be the class labels.

Tutorial 12.2    CIFAR-10 image feature extraction and classification

The CIFAR-10 dataset consists of 60,000 32 × 32 color images in 10 classes, 
with 6000 images per class. There are 50,000 training images and 10,000 test 
images. The image classes are airplane, automobile, bird, cat, deer, dog, frog, 
horse, ship, and truck (Refer: https://www.cs.toronto.edu/~kriz/cifar.html). 
Develop a convolutional neural network to extract the features and classify the 
images. Note: Fig. 12.9 shows the CNN architecture for CIFAR-10 image feature 
extraction and classification.

Tutorial 12.6    CIFAR-10 image feature extraction and classification

Tutorial 12.6.1 Data Setup

The following code was run on google colab.

from tensorflow.keras import datasets, layers, models, losses
import matplotlib.pyplot as plt

Download and prepare the CIFAR10 dataset. The dataset contains 60,000 color 
images in 10 classes. Data loading may take time

(X_train, y_train), (X_test, y_test) = datasets.cifar10.load_data()
Image shape X(32, 32, 3): (image_height, image_width, color_channels). Col-
or_channels have 3 components (R,G,B), each with a value 0..255

Get familiar with the data
X_train[0].shape  # (32, 32, 3)   one image
X_train[0][0][0]  # [59, 62, 63]  (R,G,B) values of one pixel of the 

first image
y_train[0].shape  # (1,)
y_train[0][0]     # (6) the target label of one object 
# target labels are 0..9; corresponding names are given below 
target_labels = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

Normalize pixel values to be within 0 and 1
X_train, X_test = X_train / 255.0, X_test / 255.0

https://www.cs.toronto.edu/~kriz/cifar.html


419

Fig. 12.10  Sample images

12.6 Convolutional Neural Network (CNN)

Display 12 sample images # See Figure 12-10
plt.figure(figsize=(12,12))
for i in range(12):
    plt.subplot(6,6,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(X_train[i])
    plt.xlabel(target_labels[y_train[i][0]])
plt.show()
See Figure 12-10 Sample Images

Tutorial 12.6.2 Build the CNN Model – Feature Extraction

Typically, CNN is a sequential model built using a linear stack of layers
model = models.Sequential()

Convolution: Add 32 filters, with kernel size = (f,f) = (3,3)
Choose the activation function relu. The input image is 32x32 pixels. Each 
pixel has 3 data points to represent color in RGB. So the input size is 
32x32x3

model.add(layers.Conv2D(32, (3, 3), activation='relu', 
input_shape=(32, 32, 3)))

Calculating the Image Size After Convolution
  m = 32 (input image is 32x32)
  f = 3  (3x3 filter) 
  p = 0  (no padding)
  s = 1  (stride by 1 pixel) 
  output shape is n.n
  n = (m − f + 2p)/s + 1 = (32 - 3 + 2x0)/1 + 1 = 30 (equation 12.1)
  Output image from one filter after convolution (n, n) = (30, 30)

Calculating the number of parameters in the Convolution layer



420 12 Artificial Intelligence and Deep Neural Networks

  Filter size = (3x3)
  Filter size including colour channel (R,G,B) =  = 3 x (3x3) 
  Bias = 1
  Parameters per filter = 3 x (3x3) + 1 = 27 + 1 =28
  Number of filters  (current layer) = 32
  Total number of parameters = 28 x 32 = 896 

Max pooling, with pool size = (w,w) = (2,2); padding = 0; stride = 1
model.add(layers.MaxPooling2D((2, 2)))

Output image after max-pooling (n/w, n/w) = (30/2, 30/2) = (15, 15). 
Max pooling does have any parameters, as it is a plain arithmetic 

Convolution: Add 64 filters, with kernel size = (f,f) = (3,3)
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

Calculating the Image Size After Convolution
   m = 15 (input image is 15x15, from the previous maxpooling layer)
   f = 3  (3x3 filter) 
   p = 0  (no padding)
   s = 1  (stride by 1 pixel) 
   Output shape is nxn
   n = (m − f + 2p)/s + 1 = (15 - 3 + 2x0)/1 + 1 = 13 (equation 12.1)
   Output image from one filter after convolution (n, n) = (13, 13)
   Number of filters = 64
   Total number of parameters = (13, 13) x 64 = 18496 

Calculating the number of parameters in the Convolution layer
   Number of filters from previous layer = 32
   Filter size = (3x3)
   Bias = 1
   Parameters per filter = 32 x (3x3) + 1 = 288 + 1 =289
   Number of filters (current layer) = 64
   Total number of parameters = 289 x 64 = 18496 

Max pooling, with pool size = (w,w) = (2,2); padding = 0; stride = 1
model.add(layers.MaxPooling2D((2, 2)))

Output image after max-pooling (n/w, n/w) = (13/2, 13/2) = (6, 6)
Max pooling does have any parameters, as it is a plain arithmetic 

Convolution: Add 64 filters, with kernel size = (f,f) = (3,3)
model.add(layers.Conv2D(128, (3, 3), activation='relu'))

Calculating the Image Size After Convolution
   m = 6  (input image is 15x15, from the previous maxpooling layer)
   f = 3  (3x3 filter) 
   p = 0  (no padding)
   s = 1  (stride by 1 pixel) 
   Output shape is nxn
   n = (m − f + 2p)/s + 1 = (6 - 3 + 2x0)/1 + 1 = 4 (equation 12.1)
   Output image from one filter after convolution (n, n) = (4, 4)
   Number of filters = 128



42112.6 Convolutional Neural Network (CNN)

Calculating the number of parameters in the Convolution layer
   Number of filters from previous layer = 64
   Filter size = (3x3)
   Bias = 1
   Parameters per filter = 64 x (3x3) + 1 = 576 + 1 = 577
   Number of filters (current layer) = 128
   Total number of parameters = 577 x 128 = 73856 

Flatten the 3D array to 1D
model.add(layers.Flatten())

Output from the previous convolution layer = (4, 4, 128)
Output of flatten = 4 x 4 x 128 = 2048
Flatten just reshapes the array. So, there are no parameters

You may use dropout, a technique to prevent overfitting, after every convolu-
tion layer. Randomly selected neurons are ignored during training only. The 
% of the nodes to ignore is specified as a parameter.
Dropout 20% of the nodes at random.

model.add(layers.Dropout(0.2))  

Tutorial 12.6.3 Build the CNN Model – Classification

Add Dense layers
model.add(layers.Dense(128, activation='relu'))
Output of dense layer = 128

Output from the previous flatten layer = 2048
Bias = 1
Dense layer: each node in dense layer will receive 2048 inputs + 1 bias
Therefore, parameters per node, in the dense layer = 2048 +1
Number of nodes in the dense layer = 128
Total number of parameters = (2048+1) * 128 = 262272 

The images has 10 labels. So we will use a final Dense layer with 10 outputs
model.add(layers.Dense(10))

Output of current dense layer = 10
Output from the previous dense layer = 128
Bias = 1
Dense connection: each of the 10 nodes will receive 128 inputs + 1 bias
Therefore, parameters per node, in the dense layer = 128 +1
Total number of parameters = (128+1) * 10 = 1290 



422 12 Artificial Intelligence and Deep Neural Networks

model.summary() 
Layer (type)                   Output Shape       Param #   
----------------------------------------------------------
conv2d (Conv2D)                (None, 30, 30, 32)      896       
max_pooling2d (MaxPooling2D)   (None, 15, 15, 32)        0         
conv2d_1 (Conv2D)              (None, 13, 13, 64)    18496     
max_pooling2d_1 (MaxPooling2D) (None, 6, 6, 64)          0         
conv2d_2 (Conv2D)              (None, 4, 4, 128)     73856     
flatten (Flatten)              (None, 2048)              0         
dense (Dense)                  (None, 128)          262272    
dense_1 (Dense)                (None, 10)             1290
----------------------------------------------------------
Total params:                                      356,810
Trainable params:                                  356,810
Non-trainable params:                                    0

Tutorial 12.6.4 Compile and Run the Model

Compile the CNN model. Use, Optimizer: adam; Loss function for classification: 
cross entropy

model.compile(optimizer='adam', 
     loss=losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=['acc'])

Run the CNN model for 5 epochs
run_history = model.fit(X_train, y_train, epochs=5, 
                    validation_data=(X_test, y_test))

Save the CNN model for future use
model.save('Cifar10_CNN_Model_version01') 

Load the saved CNN model 
from keras.models import load_model 
saved_model=load_model('Cifar10_CNN_Model_version01')

Tutorial 12.6.5 Plot Train-Test Convergence History

plt.plot(run_history.history['acc'], 
         label='model accuracy on training dataset',linestyle='--')
plt.plot(run_history.history['val_acc'], 
         label = 'model acuracy on test dataset',linestyle='-.')
plt.xlabel('Epoch',fontsize=14)
plt.ylabel('Accuracy',fontsize=14)
plt.ylim([0.5, 1])
plt.legend(fontsize=14)

See Figure 12-11: Train-Test Convergence



423

Fig. 12.11  The cross-
validation history

12.7 Recurrent Neural Network (RNN) and LSTM

12.7  Recurrent Neural Network (RNN) and LSTM

A recurrent neural network (RNN) is a feedback neural network, unlike CNN. 
RNN is also known as auto-associative network. RNN is designed to recognize 
sequences, such as the sentences in a natural language which is composed of 
sequences of words, or the stock market position of a company, which is com-
posed of a series of stock prices.

The LSTM model is a refinement RNN for learning long-distance associations. 
LSTM can save selected information into the memory, forget information by purg-
ing it, and focus on memory that is relevant to the context.

12.7.1  RNN

RNN is commonly used for natural language processing (Leskovec et al. 2020). 
Consider a sentence in the English language. After processing the initial set of 
words in a sentence (‘prefix’), we may predict the next word in the sentence. The 
next word can be drawn from a set of words with probabilities associated with 
each word.

RNN is a special type of neural network. Figure 12.12 depicts RNN architec-
ture. It has three types of layers: the input layer x (e.g., a set of words in a sen-
tence), the hidden layer h, and the output layer o. The instance of time is indicated 
by the superscript (t). U, V, and W are weight vectors, and the hidden layer con-
sists of an activation function (e.g., sigmoid).

RNN takes a set of words as input. Assume a fixed-length sequence of n words, 
x1, x2,..., xn as input to the RNN. Each input word is usually one hot encoded 
(OHE), as a vector of size equal to the number of words in our dictionary. The 
output is also a sequence of words o1, o2,..., on. Each output oi is a vector of words 
with probabilities assigned to them, from which we predict the next word in the 



424 12 Artificial Intelligence and Deep Neural Networks

Fig. 12.12  RNN architecture

sentence. At each step t, we have the memory vector, ht, generated in the hidden 
layer, based on the sequence of words it has already observed, and the input at 
time t, xt. The memory vector can be expressed as

ht = f (Wht−1 + UXt + bh)

where 

f   may be a sigmoid function with output (0 … 1) or tanh function with 
output {−1 … +1},

W and U   are weight matrices,
ht-1   is the current hidden state,
Xt,   is the input,
bh   is the bias vector.
Similarly, the output at time t is

ot = g(Vht + b0)

where 

g   could be a SoftMax function to generate a vector of probabilities that sums up 
to 1,

V   is the weight matrix,
ht   is the new hidden state,
bo   is the bias vector.

The main differences between a general neural network and RNN can be sum-
marized as follows:

• The output at each point depends on the entire prefix of the sentence until that 
point. Therefore, the network needs to retain the prefixing words in memory.

• A language follows a given grammar, and it does not change across the words 
in the sentence. Therefore model parameters (weights—U, V, W) are the same 
across the nodes.



425

Fig. 12.13  LSTM architecture

12.7 Recurrent Neural Network (RNN) and LSTM

12.7.2  Long Short-Term Memory (LSTM)

LSTM is an evolution of RNN, capable of learning and remembering depend-
encies in a sequence and using that for prediction (Leskovec et al. 2020). This is 
useful for applications such as language translation and speech recognition. For 
example, consider Google's predictive search feature to predict a user's search 
query. If someone types ‘what is pop …’, it may be suffixed by ‘corn’ (what is 
popcorn) or ‘music’ (what is pop music). LSTM applications are very much bene-
ficial in such contexts.

The LSTM model is organized as a chain structure with three gates—the for-
get gate, input gate, and output gate. A typical LSTM network comprises mem-
ory blocks called cells. In each instance of time t, two states will be computed 
and transferred to the next cell—the hidden state (ht) corresponding to the working 
memory and the cell state (ct) corresponding to the long-term memory content. 
Sigmoid gates add (new) data or remove (old) data. These concepts are described 
below with the help of Fig. 12.13 LSTM architecture.

Current State and Inputs

Current cell state   ct-1 {Current Long 
Memory}

Current hidden state   ht-1{Current Working 
Memory}

Input   xt
Weight matrix at forget gate, input gate, and output gate   W {Wf, Wi, Wo}
Bias, at forget gate, input gate, and output gate   b {bf, bi, bo}



426 12 Artificial Intelligence and Deep Neural Networks

The Forget Gate

The forget gate determines the data to be discarded from long-term memory. Note 
that the sigmoid function σ generates an output (0 … 1).

The Input Gate

The input gate determines the updates to the long-term memory. The sigmoid 
function σ generates an output (0 … 1)

ft = σ(Wfht−1,WfXt + bf)

it = σ(Wiht−1, UiXt + bi)

Cell State (Ct)

Cell state (ct) corresponds to the long-term memory content of the network. The 
long-term memory is updated, based on the input gate it and forget gate ft, as 
shown below:

ct = ct−1.ft + ht.it)

The Output Gate

The output gate extracts meaningful data from the current cell state (ht-1).

ot = σ(W0ht−1 + U0Xt + b0)

Then updates the working memory:

ht = tanh(ct.ot)

Note that the tanh function generates an output in the range of {−1 … + 1}.

12.7.3  LSTM for Power Demand Prediction

The dataset ‘PowerConsumption_2013_19.csv’ consists of data from the state 
electricity board, from 2013 to 2019, of a state in India. The features include daily 
power demand, shortage, consumption, load, OD/UD, and date. Download the file 
from GitHub—(Sundararajan 2023). Develop an LSTM to predict power demand.



42712.7 Recurrent Neural Network (RNN) and LSTM

Tutorial 12.7    LSTM for Power Demand Prediction

Tutorial 12.7.1 Import Libraries

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

Tutorial 12.7.2 Data Setup

The dataset consists of daily power demand, shortage, consumption, load 
Download the data (Refer: {(Sundararajan, 2023)} and provide the path in the 
following instruction

d = pd.read_csv(r'PowerConsumption_2013_19.csv')
d.columns 
['Max_Demand_Day_MW', 'Shortage_During_Max_Demand_MW','Energy_Met_MU',
'Draw_Schedule_MU', 'OD_UD_MU', 'Max_OD_MU', 'Year', 'Month', 'Date']

Convert ‘Draw_Schedule_MU’ to floating point format
d = d.Draw_Schedule_MU.astype('float32')

Drop rows with null values, if any
d.dropna(inplace=True)

Convert the array of values into 2D array in Numpy - 'ElectricPowerLoad'
def create_ElectricPowerLoad(ElectricPowerLoad, look_back=1):
       dataX, dataY = [], []
       for i in range(len(ElectricPowerLoad)-look_back-1):
                a = ElectricPowerLoad[i:(i+look_back), 0]
                dataX.append(a)
                dataY.append(ElectricPowerLoad[i + look_back, 0])
       return np.array(dataX), np.array(dataY)

Normalize the ElectricPowerLoad
scaler = MinMaxScaler(feature_range=(0, 1))

Reshape the array to 1 dimension
d=np.array(d).reshape(-1,1)

If we give -1 as a parameter, eg., reshape (-1,1), numpy will compute the 
number of rows implicitly



428 12 Artificial Intelligence and Deep Neural Networks

ElectricPowerLoad = scaler.fit_transform(d)
len(d) # 2161

Random seed helps reproducible results on repeated trials
np.random.seed(0)

Split into Train and Test sets
TrainSize = int(len(ElectricPowerLoad) * 0.67)
TestSize  = len(ElectricPowerLoad) - TrainSize
TrainSplit, TestSplit = ElectricPowerLoad[0:TrainSize,:], 
ElectricPowerLoad[TrainSize:len(ElectricPowerLoad),:]

Reshape into X=t and Y=t+1 
look_back = 1 # See Table 12-4
X_Train, Y_Train = create_ElectricPowerLoad(TrainSplit, look_back)
X_Test, Y_Test   = create_ElectricPowerLoad(TestSplit, look_back)
X_Train.shape # (1445, 1)

Reshape input to the format required for LSTM:
From [samples, features] to [samples, time steps, features]
From (1445, 1) to (1445, 1, 1) 

X_Train = np.reshape(X_Train, (X_Train.shape[0], 1, X_Train.shape[1]))
X_Test.shape # Reshape from (712, 1) to (712, 1, 1)
X_Test  = np.reshape(X_Test, (X_Test.shape[0], 1, X_Test.shape[1]))

Tutorial 12.7.3 Configure and Compile the LSTM network

model = Sequential()
The IDE may throw an error regarding GPU usage. However, we do not need GPU 
to execute this tutorial as the data volume is small)

Add LSTM layer with 1 input and 4 LSTM blocks
model.add(LSTM(4, input_shape=(1, look_back)))

We need 1 output
model.add(Dense(1))

The default activation function for LSTM is sigmoid; Loss function is MSE; 
optimizer is adam. 

The network is trained for 100 epochs; batch size of 1 is used
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_Train, Y_Train, epochs=100, batch_size=1, verbose=2)

Tutorial 12.7.4 Predict Power Demand

Make Predictions – using the Train data
TrgPredictions = model.predict(X_Train)
# [[0.2129], [0.2405], [0.2401], ..., [0.5037], [0.5392], [0.4887]]



42912.7 Recurrent Neural Network (RNN) and LSTM

De-normalise or get the predictions in the original scale
TrgPredictions = scaler.inverse_transform(TrgPredictions)
# [[ 61.91], [70.05], [69.95], ..., [147.79], [158.29], [143.38]]

Train-Y values: de-normalize or get the values in the original scale
Y_Train = scaler.inverse_transform([Y_Train])

Make Predictions – using Test Data
TestPredictions  = model.predict(X_Test)

Test X values- de-normalise or get the predictions in the original scale
TestPredictions = scaler.inverse_transform(TestPredictions)

Test Y values - de-normalize or get the values in the original scale
Y_Test = scaler.inverse_transform([Y_Test])

Calculate RMSE Error for Train and Test Data Separately

Calculate RMSE Error for Train Data
TrainScore = math.sqrt(mean_squared_error(Y_Train[0], 
TrgPredictions[:,0]))
print('Train Score: %.2f RMSE' % (TrainScore)) # Train Score: 10.61 RMSE

Calculate RMSE Error for Test Data
TestScore = math.sqrt(mean_squared_error(Y_Test[0], 
TestPredictions[:,0]))
print('Test Score: %.2f RMSE' % (TestScore))  # Test Score: 11.54 RMSE

Tutorial 12.7.5 Power Demand Plot

Shift Train predictions for plotting
TrainingPredForPlot = np.zeros(ElectricPowerLoad.shape)
TrainingPredForPlot[look_back:len(TrgPredictions)+look_back, :] = 
TrgPredictions
TestPredForPlot = np.zeros(ElectricPowerLoad.shape)
TestPredForPlot[len(TrgPredictions)+(look_back*2)+1:len(ElectricPowerLoad
)-1, :] = TestPredictions

Plot baseline and predictions
leg = ['entire data',' training predictions','test predictions']
plt.title('Electrical Load Schedule 2013-2018')
plt.plot(scaler.inverse_transform(ElectricPowerLoad),
         linestyle='dotted',color='black')
plt.plot(TrainingPredForPlot,linestyle='dashdot',color='blue')
plt.plot(TestPredForPlot,linestyle='dashed',color='green')
plt.xlabel('Time Step in Days')
plt.ylabel('Million Units')
plt.legend(leg)
plt.show()

See Figure 12-14 LSTM for Power Demand Prediction



430 12 Artificial Intelligence and Deep Neural Networks

Table 12.4  Predicting the next 
value (Yt+1) from a sequence  
(X0 … Xt)

Fig. 12.14  LSTM for power 
demand prediction

Data Analytics in Action

‘Go’ is a 3000-year-old Chinese strategy game. Two players with white or 
black stones take turns placing their stones on a board. The goal is to surround 
and capture their opponent's stones or strategically create spaces of territory. 
Once all possible moves have been played, the stones on the board and the 
empty points are tallied. The highest number wins (brainpool.ai 2021). Go 
has about 10 simple rules. However, this gives rise to 10170 possible board 
configurations!

AlphaGo is a computer program developed by DeepMind Technologies, a 
Google subsidiary. AlphaGo’s research work started in 2014. It defeated the 
reigning European champion in 2015. After defeating many world champions 
in several games, it was retired in 2017. AlphaGo used the tree search to eval-
uate positions and deep neural networks to select the moves. These neural net-
works were trained by supervised learning from human experts. Then AlphaGo 
trained itself through self-play, using reinforcement learning.



431Summary

Summary

The term Artificial Intelligence (AI) is defined AI as ‘the science and engineer-
ing of making intelligent machines’. Research in AI is associated with learning 
(memorization and generalization), reasoning (inductive and deductive), prob-
lem-solving, perception, and language. AI research greatly boosted in the 2010s 
with the emergence of powerful systems to process big data and support machine 
intelligence.

While humans learn from experience, machines learn from data and improve 
their accuracy over time, without being programmed to do so. Machine learn-
ing involves identifying the right model parameters that optimize the predictive 
capability and deriving information from available data. Machine learning can be 
broadly categorized into four groups—supervised learning, unsupervised learning, 
semi-supervised learning, and reinforcement learning.

Scientists have developed two approaches to AI—symbolic and connection-
ist—expert systems are symbolic; deep learning is connectionist. Deep learning 
emphasizes learning by successive layers of increasingly meaningful representa-
tions, using a connectionist design of layers of neurons.

A neural net is a collection of neurons organized in layers. The outputs from 
one layer provide inputs to the next layer. The input layer receives external inputs. 
The final output emerges from the output layer. The other layers in the middle are 
called hidden layers and generally are trained to recognize intermediate concepts 
needed to determine the output. A neuron takes one or more inputs, multiplies 
each input by a weight parameter, sums them up, and adds a bias term to the sum. 
The weighted sum is passed as input to an activation function, which transforms 
it. Common activation functions include the sigmoid function, the hyperbolic tan-
gent, SoftMax, and rectified linear unit functions.

A deep learning neural network will have multiple layers, each with a set of 
neurons. A layer other than the input layer consists of (a) an activation function—
which accepts a tensor input and generates a tensor output and (b) the current 
state—the (coefficient) weights held in TensorFlow variables.

In a neural network, learning involves finding a combination of model parame-
ters that minimize a loss function for a given set of training data samples. Random 
batches of data samples are drawn and the gradient of the model parameters with 
respect to the loss (output—actual target) is computed. The parameters are modi-
fied by a fraction defined by the learning rate in the direction opposite to the gra-
dient. This is achieved by an algorithm traversing the entire network backward, 
starting from the output layer. The weights are adjusted based on their contribution 
to error, applying the chain rule of derivatives. This is called backpropagation in a 
multi-layer neural network. This process is repeated with several passes over the 
entire dataset, for convergence against set criteria.

Optimization techniques help to minimize the loss function (or optimize the 
cost function). The optimizer specifies how the gradient of the loss will be used to 
update parameters. Some of the commonly used optimizers are Gradient Descent, 



432 12 Artificial Intelligence and Deep Neural Networks

AdaGrad, RMSProp, and Adam. Gradient descent is an optimization algorithm 
that uses the negative gradient of an objective function to locate the minima. Other 
methods are improvements over gradient descent.

Regularization helps to prevent overfitting. Specialized techniques are used to 
avoid overfitting a deep neural network. These include penalizing large weights 
(coefficients), randomly dropping some nodes each time we apply a step of gradi-
ent descent, and using a validation set to stop training when the loss on the valida-
tion set converges.

Feed-Forward Neural Network (FFNN) is a simple multilayered neural network 
where the input data moves through hidden layers to the output layer in only one 
direction. The layers do not give feedback to any previous layers. Convolutional 
Neural Network (CNN) is a feed-forward neural network, commonly used for 
image processing. CNN consists of the following segments—feature extraction 
and classification. The feature extraction segment consists of many convolutional 
layers, followed by pooled layers. Convolutional layers help detect features like 
edges and thereby progressively put together complex structures, such as eyes. 
These features are passed on to the classification layers to determine the class 
labels. A recurrent neural network (RNN) is a feedback network, commonly used 
for sequence/natural language processing. Long Short-Term Memory (LSTM) 
improves RNN architecture for learning long-distance associations. LSTM can 
save selected information into the memory, forget information by purging it, and 
focus on memory that is relevant to the context.

Questions

Comprehension

Write brief notes on:

 1. How is learning achieved in an ANN?
 2. Unsupervised learning.
 3. Reinforcement learning.
 4. The architecture of an artificial neuron.
 5. Activation function.
 6. Loss functions used in regression models.
 7. Loss functions used in classification models.
 8. Various optimization techniques.
 9. Feed-forward neural network.
 10. Convolution in convolutional neural network.
 11. Feature extraction method.
 12. Describe deep neural network with a suitable example.
 13. Describe regularization techniques.



433Questions

 14. Describe convolutional neural network (CNN) architecture.
 15. Describe a recurrent neural network (RNN) architecture.
 16. Describe long short-term memory (LSTM) architecture.
 17. Write a note on the capabilities of AI today.
 18. Write a note on current applications of AI. 

Analysis

 19. How did historical predictions about AI, such as Turing's chess-playing com-
puters and Chomsky's skepticism, shape the perception and development of 
AI over the years?

 20. In what ways does AI raise fundamental questions in philosophy, especially in 
the realms of epistemology and axiology? How might the developments in AI 
influence our understanding of intelligence, reasoning, and ethics?

 21. Explore the diverse applications of ML in bioinformatics, health care, natu-
ral language processing, and image processing. How has ML contributed to 
advancements in these domains?

 22. Compare and Contrast Artificial Intelligence with Human Intelligence 
capabilities.

 23. Explore the challenges in training deep neural networks, including issues like 
vanishing/exploding gradients and overfitting. How do techniques like drop-
out and regularization address these challenges?

 24. What are the main segments of a Convolutional Neural Network (CNN) for 
image processing? Explain the purpose of each segment in a CNN, such as 
feature extraction and classification.

 25. Compare and contrast LeNet-5, AlexNet, VGGNet, GoogLeNet, ResNet, and 
DenseNet in terms of their key features and contributions.

 26. Describe the basic concept of convolution in image processing. Explain how 
feature extraction works in CNNs and its significance in image analysis.

 27. Explain the process of applying a filter (kernel) to an image using 
convolution.

 28. What distinguishes RNNs from other types of neural networks, especially in 
handling sequential data?

 29. Describe the Long Short-Term Memory (LSTM) model and its purpose com-
pared to traditional RNNs.

 30. Explain the roles of the forget gate, input gate, and output gate in an LSTM. 
How do these gates contribute to the memory management of the LSTM?



434 12 Artificial Intelligence and Deep Neural Networks

Application

31. How has the emergence of powerful systems for processing big data in the 
2010s impacted real-world applications of AI in various sectors such as busi-
ness, health care, and government services?

32. Explore the societal implications raised by Yuval Noah Harari, such as the 
impact on the job market and the emergence of economically useless individ-
uals. How might these scenarios play out by the year 2040?

33. Explore how Convolutional Neural Networks (CNNs) are applied in digital 
image processing, especially in fields like biomedical image processing and 
remote sensing.

34. Explore the practical applications of generative AI, focusing on models like 
ChatGPT. How is it utilized in coding, music composition, and content crea-
tion across various mediums?

35. Explore success stories in the application of Reinforcement Learning (RL) in 
various fields such as gaming, robotics, and health care. What are the specific 
achievements and challenges faced?

Exercises

Exercise 12.1 Build a Neural Network for Term Deposit Prediction

Refer to the Bank Marketing dataset described in Chap. 1. Build a Neural Network 
Model to predict whether a client will subscribe to a term deposit.

For the dataset, refer: https://archive.ics.uci.edu/ml/datasets/bank+marketing/

Exercise 12.2 Build a Neural Network for Hand-Written Character 
Recognition

The MNIST database of handwritten digits houses 60,000 training samples and 
10,000 test samples of handwritten digit images in black and white {0, 1}. The 
digits have been size-normalized and centered in a fixed-size image of 28 × 28. 
Develop a convolutional neural network to classify the images. Describe the net-
work structure and parameters.

For the dataset, refer: http://yann.lecun.com/exdb/mnist/

Exercise 12.3 Build a Neural Network for Visual Image Detection

We have used CIFAR-10 in a previous tutorial. The CIFAR-100 dataset is similar 
to the CIFAR-10. It has 100 classes containing 600 images each. There are 500 
training images and 100 testing images per class. The 100 classes in the CIFAR-
100 are grouped into 20 superclasses. Each image comes with a ‘fine’ label (the 
class to which it belongs) and a ‘coarse’ label (the superclass to which it belongs).

Refer: https://www.cs.toronto.edu/~kriz/cifar.html

http://dx.doi.org/10.1007/978-981-99-0353-5_1
https://archive.ics.uci.edu/ml/datasets/bank+marketing/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html


435References

Exercise 12.4 Develop a Neural Network for Energy Demand Prediction

The dataset ‘PowerConsumption_2013_19.csv’ consists of data from the electric-
ity board for a state in India from 2013 to 2019. There are nine features and 2161 
rows. Download the file from GitHub. (# Data File—Sundararajan 2023). Develop 
an LSTM to predict power shortages.

References

Andresen SL (2002) John McCarthy: father of AI. IEEE Intell Syst 17(5):84–85
brainpool.ai. (2021) Reinforcement learning: optimising data-driven decision-making by reward-

ing positive Outcomes. https://blog.brainpool.ai/reinforcement-learning-optimising-data-driv-
en-decision-making-by-rewarding-positive-outcomes/

Chollet F (2017) Deep learning with Python. Simon and Schuster
François C (2019) Chollet—2018—Deep learning with Python. In: Manning, vol 53, issue 9
Copeland BJ (2023) Artificial intelligence. https://kids.britannica.com/scholars/article/

artificial-intelligence/9711
Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (2019, 

O’reilly). In: Hands-On Machine Learning with R
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press
Harari YN (2016) Homo Deus: a brief history of tomorrow. random house
Han J, Micheline Kamber JP (2014) Data mining. concepts and techniques, 3rd edn (The Morgan 

Kaufmann Series in Data management systems). In: Proceedings—2013 international confer-
ence on machine intelligence research and advancement, ICMIRA 2013

Leskovec J, Rajaraman A, Ullman JD (2020) Mining of massive datasets. Cambridge. In: 
Biometrics, issue 4. Cambridge University Press. https://doi.org/10.1111/biom.12982

Sujith R (2016) Graph-powered Machine Learning at Google. Google Research. https://blog.
research.google/2016/10/graph-powered-machine-learning-at-google.html

Sundararajan S (2023) MVA-ML. https://github.com/sun-sri/MVA-ML

https://blog.brainpool.ai/reinforcement-learning-optimising-data-driven-decision-making-by-rewarding-positive-outcomes/
https://blog.brainpool.ai/reinforcement-learning-optimising-data-driven-decision-making-by-rewarding-positive-outcomes/
https://kids.britannica.com/scholars/article/artificial-intelligence/9711
https://kids.britannica.com/scholars/article/artificial-intelligence/9711
http://dx.doi.org/10.1111/biom.12982
https://blog.research.google/2016/10/graph-powered-machine-learning-at-google.html
https://blog.research.google/2016/10/graph-powered-machine-learning-at-google.html
https://github.com/sun-sri/MVA-ML

	Preface
	Acknowledgements
	Contents
	About the Author
	List of Figures
	List of Tutorials
	1 Introduction and Overview
	1.1 The World of Data Analytics
	1.1.1 History and Evolution
	1.1.2 Data Analytics—Basic Concepts and Terminology
	1.1.3 Job Opportunities

	1.2 How to Use This Book
	1.3 A Brief Description of the Datasets Used
	1.4 Python, Packages, TensorFlow, and Keras
	Anchor 9
	References

	2 Python for Data Analytics
	2.1 The Python Environment
	2.1.1 The World of Python
	2.1.2 IDE for Python Programming
	2.1.3 Defining Python Programming Language

	2.2 Variables and Operators
	2.3 Advanced Data Structures
	2.4 Control Flow
	2.5 Functions and Libraries
	2.6 Pandas
	2.7 Numpy
	2.8 Data Processing
	2.8.1 Measurements, Features, and Targets
	2.8.2 Data Preprocessing Concepts
	2.8.3 Data Preprocessing Examples Tutorial 2.8.1 Preprocessing:  recode category -&gt; integer Recode category labels as integers, so that they may be used in computations. The integer codes are saved in a new column 'species_coded' # # list the category 

	Anchor 16
	References

	3 Introduction to Probability and Statistics
	3.1 Introduction
	3.2 Descriptive Statistics
	3.2.1 Measures of Location
	3.2.2 Measures of Dispersion
	3.2.3 Visual Description

	3.3 Probability
	3.3.1 Rules of Probability
	3.3.2 Independent Events
	3.3.3 Statistical Dependence and Bayes Theorem

	3.4 Discrete Probability Distributions
	3.4.1 Mean and Standard Deviation of a Discrete Random Variable
	3.4.2 Binomial Distribution
	3.4.3 Poisson Distribution

	3.5 Continuous Probability Distributions
	3.5.1 Normal Distribution
	3.5.2 T-Distribution
	3.5.3 Chi-Squared Distribution

	3.6 Sampling Distributions and Central Limit Theorem
	3.6.1 Sampling Methods
	3.6.2 The Central Limit Theorem

	3.7 Point and Interval Estimates
	References

	4 Hypothesis Testing
	4.1 The Fundamentals of Hypothesis Testing
	4.1.1 Hypothesis Testing Procedure
	4.1.2 Hypothesis Formulation
	4.1.3 Type I Error, Type II Error, and the Level of Significance

	4.2 Comparison of Means Overview
	4.3 Comparison of Means—Independent Samples t-Test
	4.4 One Sample T-Test
	4.5 Comparison of Means—Paired Samples
	4.6 One-Way Anova
	4.7 Chi-Square Test of Independence
	References

	5 Regression Analysis
	5.1 Correlation
	5.2 Regression
	5.2.1 Mathematical Insights on Linear Regression Model
	5.2.2 Multiple Linear Regression Model
	5.2.3 The Coefficient of Determination
	5.2.4 Manual Calculation of R2
	5.2.5 Significance of the Overall Linear Regression Model

	5.3 The Regression Analysis Procedure
	5.3.1 Primary Inspection of the Results of Regression Analysis
	5.3.2 Some Concepts Associated with Regression Analysis
	5.3.3 Advanced Inspection of the Results of Regression Analysis

	5.4 Case Study on Regression Analysis
	5.4.1 Case Study—Part I—Number Checks
	5.4.2 Case Study—Part II—Visual Inspections

	5.5 Case Study—Stepwise Regression
	5.6 Case Study—Feature Ranking
	5.7 Polynomial Regression
	References

	6 Classification
	6.1 Introduction
	6.2 Binary Logistic Regression
	6.3 Model Performance
	6.4 Linear Discriminant Analysis (LDA)
	6.5 Decision Trees
	6.5.1 The Basic Decision Tree Algorithm
	6.5.2 Feature Selection
	6.5.3 Overfitting and Tree Pruning
	6.5.4 Various Decision Tree Algorithms

	6.6 Support Vector Machines
	6.7 Other Classification Methods
	Anchor 13
	References

	7 Factor Analysis
	7.1 Factor Analysis—Introduction and Overview
	7.1.1 Factor Analysis
	7.1.2 PCA—Theoretical Basis
	7.1.3 A Case Study

	7.2 Important Concepts Associated with Factor Analysis
	7.2.1 The Measurement Instrument
	7.2.2 Data Validation
	7.2.3 Common Terms Associated with Factor Analysis
	7.2.4 Rotation
	7.2.5 The Steps Involved in Factor Analysis
	7.2.6 How to Determine the Number of Factors

	7.3 The Project Performance Case Study
	7.3.1 Factor Analysis Procedure
	7.3.2 Data Transformation
	7.3.3 Case Study—Conclusion

	7.4 Confirmatory Factor Analysis
	References

	8 Cluster Analysis
	8.1 An Overview of Cluster Analysis
	8.1.1 Proximity Measures
	8.1.1.1 Common Measures

	8.1.2 Challenges in Cluster Analysis
	8.1.3 General Procedure for Cluster Analysis

	8.2 Hierarchical Methods
	8.2.1 Agglomerative/Divisive Clustering
	8.2.2 Dendrogram
	8.2.3 Distance Measures in Hierarchical Clustering

	8.3 Partitioning Methods
	8.3.1 K-Means Method
	8.3.2 K-Medoids Method
	8.3.3 CLARANS Method
	8.3.4 Distance Measures in Partitioning Methods

	8.4 Performance Evaluation
	8.4.1 Silhouette Coefficient
	8.4.2 Calinski-Harabasz Index
	8.4.3 Evaluation of the Quality of Clustering
	8.4.4 Scree Plot

	8.5 Other Clustering Methods
	8.5.1 The Choice of Algorithms
	8.5.2 Density-Based Clustering
	8.5.3 Grid Based Clustering
	8.5.4 Probability Model-Based Clustering
	8.5.5 Clustering High Dimensional Data
	8.5.6 Clustering Large Datasets
	8.5.7 Clustering Graphs and Network Data

	Anchor 29
	References

	9 Survival Analysis
	9.1 Introduction and Overview
	9.1.1 What is Censored Data?
	9.1.2 The Goals of Survival Analysis
	9.1.3 A Survival Analysis Case Study

	9.2 Kaplan–Meier Survival Estimate
	9.3 Log-Rank Test and Cox Proportional Hazards Model
	9.3.1 The Log-Rank Test for Comparing Groups
	9.3.2 Cox Proportional Hazards Survival Model

	9.4 Parsimonious Model for Survival Analysis
	9.4.1 Grid Search to Build a Parsimonious Model
	9.4.2 Random Forest Survival Analysis Model

	9.5 Performance Metrics
	9.5.1 Score Based on Outcome Counts
	9.5.2 Brier Score
	9.5.3 Area Under the Curve (ROC, AUC)
	9.5.4 Concordance Index

	Anchor 18
	References

	10 Computational Techniques
	10.1 Introduction to Computational Techniques
	10.2 Frequent Itemsets and Market Basket Analysis (MBA)
	10.2.1 Frequent Itemsets
	10.2.2 Association Rule Mining
	10.2.3 The Apriori Algorithm
	10.2.4 Generation of Frequent Itemsets—An Example
	10.2.5 Pruning—An Example with 3-item Itemset
	10.2.6 Association Rule Mining—An Example
	10.2.7 Algorithms Used in Market Bask Analysis

	10.3 Social Network Analysis
	10.3.1 Social Networks—Introduction and Overview
	10.3.2 Basics of Graph Theory
	10.3.3 Understanding NetworkX Package
	10.3.4 Analysis of Social Networks
	10.3.5 The Betweenness of Edges
	10.3.6 Community Detection: Girvan-Newman Algorithm
	10.3.7 Community Detection: Correlation Clustering

	10.4 Recommendation Systems
	10.4.1 Content-Based Recommendation
	10.4.2 Collaborative Filtering
	10.4.3 Collaborative filtering (User-User)—Example
	10.4.4 Collaborative Filtering (Item-Item)
	10.4.5 UV Decomposition

	References

	11 Machine Learning
	11.1 Exploring Supervised Machine Learning
	11.2 Learning by Gradient Descent Optimization
	11.2.1 Regression Analysis: From Exact Solutions to Gradient Descent
	11.2.2 Gradient Descent Optimization Techniques
	11.2.3 Stochastic Gradient Descent Regressor

	11.3 Regularization for Smoothening
	11.3.1 Ridge Regression
	11.3.2 Lasso Regression
	11.3.3 Elastic Net Regression

	11.4 Classification
	11.4.1 Regularization in Classification
	11.4.2 Stochastic Gradient Descent Classifier

	11.5 Cross-Validation
	11.6 Building Robust Machine Learning Models
	11.6.1 Hyperparameter Tuning
	11.6.2 Ensemble Methods
	11.6.3 Bias-Variance Trade-Off
	11.6.4 Train-Test Convergence
	11.6.5 Train, Validate, Test Split
	11.6.6 Receiver Operating Characteristic: ROC/AUC Analysis

	Anchor 22
	References

	12 Artificial Intelligence and Deep Neural Networks
	12.1 Artificial Intelligence
	12.2 The Machine Learning Model
	12.2.1 Supervised Learning
	12.2.2 Unsupervised Learning
	12.2.3 Semi-supervised Learning
	12.2.4 Reinforcement Learning

	12.3 Deep Learning
	12.4 The Artificial Neural Network
	12.4.1 Neuron
	12.4.2 Activation Function
	12.4.3 Network Layers
	12.4.4 The Learning Process
	12.4.5 The Loss Function (Cost Function)
	12.4.6 Optimization Techniques (for Learning)
	12.4.7 Regularization Techniques (for Smoothening)
	12.4.8 NN Architectures, Training Challenges, and Transfer Learning
	12.4.9 Keras and TensorFlow

	12.5 Simple Feed-Forward Neural Network (FFNN)
	12.5.1 FFNN—Basic Operation
	12.5.2 An FFNN for Diamond Price Prediction

	12.6 Convolutional Neural Network (CNN)
	12.6.1 Convolution
	12.6.2 Feature Extraction
	12.6.3 Classification

	12.7 Recurrent Neural Network (RNN) and LSTM
	12.7.1 RNN
	12.7.2 Long Short-Term Memory (LSTM)
	12.7.3 LSTM for Power Demand Prediction

	References


